Параболические координаты — ортогональная система координат на плоскости, в которой координатные линии являются конфокальными параболами. Трёхмерный вариант этой системы координат получается при вращении парабол вокруг их оси симметрии.
Параболические координаты нашли многочисленные применения в математической физике, в частности, в теории эффекта Штарка и задаче о потенциале вблизи угла.
Прочие дифференциальные операторы могут быть аналогично найдены подстановкой коэффициентов Ламэ в соответствующую общую формулу.
Трёхмерные параболические координаты
На основе двумерных параболических координат строятся два типа трёхмерных координат. Первые получаются простым проектированием на плоскость вдоль оси и называются цилиндрические параболические координаты.
Вторая система координат, также называемая «параболические координаты», строится на основе параболоидов вращения, получаемых вращением парабол вокруг их оси симметрии
Ось параболоидов совпадает с осью , так как вокруг неё производится вращение. Азимутальный угол определяется как
Поверхности постоянной являются конфокальными параболоидами
направленными вверх (вдоль луча ), а поверхности постоянной — это конфокальные параболоиды
направленные вниз (вдоль луча ). Фокусы всех параболоидов расположены в начале координат.
Дифференциальные характеристики трёхмерных координат
Коэффициенты Ламэ в трёхмерном случае:
Как видно, коэффициенты и совпадают с двумерным случаем. Элемент объёма равен
а лапласиан равен
Прочие дифференциальные операторы, такие как дивергенция или ротор могут быть аналогично найдены подстановкой коэффициентов Ламэ в соответствующую общую формулу.
Переход от декартовых координат к параболическим осуществляется по формулам:
при этом
При получаем ограничение координат на плоскость :
Линия уровня :
Это парабола, фокус которой при любом расположен в начале координат.
Аналогично при получаем
Координатные параболы пересекаются в точке
Пара парабол пересекается в двух точках, но при точка оказывается заключена в полуплоскости , так как соответствует .
Найдём коэффициенты наклоны касательных к параболам в точке :
Так как произведение коэффициентов равно −1, то параболы перпендикулярны в точке пересечения. Таким образом, параболические координаты оказываются ортогональными.
Пара определяет координаты в полуплоскости. При изменении от 0 до полуплоскость вращается вокруг оси , в качестве координатных поверхностей получаются параболоиды вращения и полуплоскости. Пара противоположных параболоидов определяет круг, а величина определяет полуплоскость, пересекающую круг в единственной точке. Её декартовы координаты равны:
Уравнение Дира́ка — релятивистски инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено Полем Дираком в 1928 году.
Диверге́нция — дифференциальный оператор, отображающий векторное поле на скалярное, который определяет, «насколько расходится входящее и исходящее из малой окрестности данной точки поле», точнее, насколько расходятся входящий и исходящий потоки.
Эффект Шубникова — де Хааза назван в честь советского физика Л. В. Шубникова и нидерландского физика В. де Хааза, открывших его в 1930 году. Наблюдаемый эффект заключался в осцилляциях магнетосопротивления плёнок висмута при низких температурах. Позже эффект Шубникова — де Гааза наблюдали в многих других металлах и полупроводниках. Эффект Шубникова — де Гааза используется для определения тензора эффективной массы и формы поверхности Ферми в металлах и полупроводниках.
Сфе́ра Ри́мана — наглядное изображение множества в виде сферы, подобно тому, как множество действительных чисел изображают в виде прямой и как множество комплексных чисел изображает в виде плоскости. По этой причине термин «сфера Римана» часто используется как синоним к термину «множество комплексных чисел, дополненных бесконечно удалённой точкой», наряду с термином «расширенная комплексная плоскость».
Си́ла Ло́ренца — сила, с которой электромагнитное поле, согласно классической (неквантовой) электродинамике, действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще, иначе говоря, со стороны электрического и магнитного полей. В Международной системе единиц (СИ) выражается как:
Опера́тор Лапла́са — дифференциальный оператор, действующий в линейном пространстве гладких функций и обозначаемый символом . Функции он ставит в соответствие функцию
Уравне́ние Пуассо́на — эллиптическое дифференциальное уравнение в частных производных, которое описывает
электростатическое поле,
гравитационное поле,
стационарное поле температуры,
поле давления,
поле потенциала скорости в гидродинамике.
Сферическая система координат — трёхмерная система координат, в которой каждая точка пространства определяется тремя числами , где — расстояние до начала координат, а и — зенитный и азимутальный углы соответственно.
Четырёхи́мпульс, 4-и́мпульс — 4-вектор энергии-импульса, релятивистское обобщение классического трёхмерного вектора импульса на четырёхмерное пространство-время. Три компонента классического вектора импульса материальной точки при этом становятся тремя пространственными компонентами вектора четырёхимпульса. Временно́й компонентой вектора четырёхимпульса является полная энергия материальной точки. Скорость изменения четырёхимпульса, оцениваемая по собственному времени движущегося тела, называется четырёхсилой.
Цилиндрической системой координат называют трёхмерную систему координат, являющуюся расширением полярной системы координат путём добавления третьей координаты, которая задаёт высоту точки над плоскостью.
Фо́рмула Кирхго́фа — аналитическое выражение для решения гиперболического уравнения в частных производных во всём трёхмерном пространстве. Методом спуска из него можно получить решения двумерного и одномерного уравнения.
Эллиптические координаты — двумерная ортогональная система координат, в которой координатными линиями являются конфокальные эллипсы и гиперболы. За два фокуса и обычно берутся точки и на оси декартовой системы координат.
В байесовской статистике априорная вероятность Джеффри, по имени Гарольда Джеффри — неинформативная (объективная) априорная вероятность в пространстве параметра, пропорциональная квадратному корню из детерминанта информации Фишера:
Спонта́нное наруше́ние симме́три́и — способ нарушения симметрии физической системы, при котором исходное состояние и уравнения движения системы инвариантны относительно некоторых преобразований симметрии, но в процессе эволюции система переходит в состояние, для которого инвариантность относительно некоторых преобразований начальной симметрии нарушается. Спонтанное нарушение симметрии всегда связано с вырождением состояния с минимальной энергией, называемого вакуумом. Множество всех вакуумов имеет начальную симметрию, однако каждый вакуум в отдельности — нет. Например, шарик в жёлобе с двумя ямами скатывается из неустойчивого симметричного состояния в устойчивое состояние с минимальной энергией либо влево, либо вправо, разрушая при этом симметрию относительно изменения левого на правое.
Четвёртая проблема Гильберта в списке проблем Гильберта касается базовой системы аксиом геометрии. Проблема состоит в том, чтобы
«Определить все с точностью до изоморфизма реализации систем аксиом классических геометрий, если в них опустить аксиомы конгруэнтности, содержащие понятия угла, и пополнить эти системы аксиомой неравенства треугольника».
Статическая изотропная метрика — это метрика, определяющая статическое изотропное гравитационное поле. Частным случаем этой метрики является метрика Шварцшильда, на случай пустого пространства-времени.
В математике теория момента остановки или марковский момент времени связана с проблемой выбора времени, чтобы принять определённое действие, для того чтобы максимизировать ожидаемое вознаграждение или минимизировать ожидаемые затраты. Проблема момента остановки может быть найдена в области статистики, экономики и финансовой математики. Самым ярким примером, относящимся к моменту остановки, является Задача о разборчивой невесте. Проблема момента остановки часто может быть указана в форме уравнения Беллмана и поэтому часто решается с помощью динамического программирования.
Специальная теория относительности (СТО) описывает пространство-время в виде псевдориманова многообразия с одним отрицательным собственным значением метрического тензора, которое соответствует «временноподобному» направлению. Метрика с несколькими отрицательными собственными значениями будет соответственно подразумевать наличие нескольких временных направлений, то есть время будет многомерным, но в настоящее время нет консенсуса насчёт связи этих дополнительных «времён» с временем в обычном понимании.
Профиль Фойгта или распределение Фойгта представляет собой распределение вероятностей, полученное путём свёртки распределения Коши — Лоренца и распределения Гаусса. Он часто используется при анализе данных спектроскопии или дифракции.
Потенциал Сазерленда — простая модель парного взаимодействия неполярных молекул, описывающая зависимость энергии взаимодействия двух частиц от расстояния между ними. Эта модель относительно реалистично передаёт свойства реального взаимодействия сферических неполярных молекул и поэтому широко используется в расчётах и при компьютерном моделировании. Впервые этот вид потенциала был предложен Уильямом Сазерлендом в 1893 году.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.