Параллакс Солнца
Параллакс Солнца, суточный параллакс Солнца (π☉) — горизонтальный экваториальный параллакс Солнца, угол, под которым со среднего расстояния Солнца виден экваториальный радиус Земли[1].
До 1964 года являлся фундаментальной астрономической постоянной и считался равным 8,80″[2]. С принятием в 1964 году астрономическим союзом новой системы единиц π☉ является производной постоянной, и составляет 8,794".[1]
Методы определения параллакса Солнца разделяются на геометрические (тригонометрические), динамические (гравитационные) и физические.
Геометрические методы определения
Теория геометрических методов разработана в 1677 Эдмундом Галлеем. В их основе лежат астрометрические измерения положений небесных тел относительно звёзд. Измерения могут быть получены одновременно на двух разных обсерваториях, лежащих почти на одном меридиане и достаточно удалённых по широте, либо на одной, но в различные часы суток, используя перемещение наблюдателя в пространстве вследствие суточного вращения Земли.
В качестве небесных тел, чьи измеренные положения использовались для вычисления π☉, в разные эпохи брались[1]:
- Марс (начиная со 2-й половины XVII века);
- Венера и её прохождение по диску Солнца (1761, 1769, 1874 и 1882 года)
- Малые планеты, в том числе Эрос, Икар и Географ, чьи координаты определялись фотографическими наблюдениями (с конца XIX века).
Динамические методы определения
Динамические методы определения параллакса Солнца основаны на изучении возмущений в движении планет и Луны, вызываемых притяжением других небесных тел. Измеренное расстояние до небесного тела R0 сравнивается с Rс, вычисленным на основе эфемерид. В результате одного наблюдения получается условное уравнение относительно элементов орбиты планеты[2]:
И полагают, что поправка к большой полуоси орбиты планеты вызвана неточностью астрономической единицы и, соответственно, параллакса Солнца.
Физические методы определения
В основе физических методов определения лежит соотношение средней скорости движения Земли по гелиоцентрической орбите (V0≈29,8 км/с) и большой полуоси орбиты.
V0 можно определить измеряя лучевые скорости звёзд, лежащих вблизи эклиптики; определяя постоянную годичной аберрации; измеряя доплеровские смещения радиолиний (с длиной волны 21 см) в спектрах межзвёздных водородных облаков.
Большую полуось можно получить методами радиолокации измеряя расстояния между Землёй и планетами, Луной, космическими зондами.
Примечания
- ↑ 1 2 3 Абалакин В.К. Параллакс Солнца // Большая Советская Энциклопедия. 3-е изд. — М.: Советская Энциклопедия, 1975. — Т. 19. Отоми — Пластырь. — С. 182—183.
- ↑ 1 2 Жаров В. Е. Суточный параллакс // Сферическая астрономия. — М., 2006. — 480 с. — (Монографии и учебники). — 500 экз. — ISBN 5-85099-168-9. Архивировано 2 марта 2014 года.
Литература
- Блажко С. Н. Курс сферической астрономии. — 2. — М.— Л., 1954.;
- Идельсон Н. И. Фундаментальные постоянные астрономии и геодезии, в кн.: Астрономический ежегодник СССР на 1942 год. — М.— Л., 1941.;
- Куликов К. А. Фундаментальные постоянные астрономии. — М., 1956.;
- Фундаментальные постоянные астрономии (Материалы 21 Симпозиума Международного астрономического союза 21 августа 1961). — М., 1967.;
- Lilley Е., Brouwer D. The solar parallax and the hydrogen line (англ.) // The Astronomical Journal. — IOP Publishing, 1959. — Vol. 64, no. 8. — .