Спе́рма, се́мя, эякуля́т — жидкость, выделяемая при эякуляции (семяизвержении) самцами животных и мужчинами. Состоит из сперматозоидов и семенной жидкости. В сельскохозяйственном производстве сперма используется при искусственном осеменении животных.
Кле́точное ядро́ — окружённая двумя мембранами важная структура эукариотической клетки. В клетках прокариот ядра нет. В клетках эукариот обычно одно ядро, однако некоторые типы клеток, например, эритроциты млекопитающих, не имеют ядра, а другие содержат несколько ядер.
Я́дерный ма́трикс, или я́дерный скеле́т — скелетная структура клеточного ядра, поддерживающая форму и некоторые особенности морфологии ядра. В состав ядерного матрикса входят ядерная ламина, остаточное ядрышко и так называемый диффузный матрикс — сеть филаментов и гранул, соединяющих ядерную ламину с остаточным ядрышком.
Я́дрышко — немембранный внутриядерный субкомпартмент, присущий всем без исключения эукариотическим организмам. Представляет собой комплекс белков и рибонуклеопротеидов, формирующийся вокруг участков ДНК, которые содержат гены рРНК — ядрышковых организаторов. Основная функция ядрышка — образование рибосомных субъединиц.
Нуклеопротеиды — комплексы нуклеиновых кислот с белками.
Протами́ны — низкомолекулярные основные белки в ядрах сперматозоидов большинства групп животных. Составляют фракцию основного белка в зрелой сперме рыб.
Шаперо́ны — класс белков, главная функция которых состоит в восстановлении правильной нативной третичной или четвертичной структуры белков, а также образование и диссоциация белковых комплексов.
piРНК — наиболее крупный класс малых некодирующих РНК, экспрессируемых в клетках животных; они обнаружены в комплексах с белками семейства Piwi, за что и получили своё название. piРНК обычно длиннее микроРНК и малых интерферирующих РНК и имеют длину 26—32 нуклеотида, кроме того, в отличие от микроРНК, они не так консервативны. Белки Piwi относятся к большой группе белков Argonaute и экспрессируются почти исключительно в клетках зародышевой линии; они необходимы для поддержания стволовых клеток зародышевой линии, сперматогенеза и репрессии мобильных элементов. Комплексы Piwi с piРНК не только задействованы в сайленсинге ретротранспозонов и других генетических элементов на пост-трансляционном уровне, но имеют и некоторые другие, в значительной мере ещё неописанные эффекты, например, эпигенетические.
Факторы транскрипции — белки́, контролирующие процесс синтеза мРНК, а также других видов РНК на матрице ДНК (транскрипцию) путём связывания со специфичными участками ДНК. Транскрипционные факторы выполняют свою функцию либо самостоятельно, либо в комплексе с другими белками. Они обеспечивают снижение (репрессоры) или повышение (активаторы) константы связывания РНК-полимеразы с регуляторными последовательностями регулируемого гена.
Транскрипцио́нный фактор NF-κB — универсальный фактор транскрипции, контролирующий экспрессию генов иммунного ответа, апоптоза и клеточного цикла. Нарушение регуляции NF-kB вызывает воспаление, аутоиммунные заболевания, а также развитие вирусных инфекций и рака. Семейство NF-kB состоит из 5 белков: NF-kB1, NF-kB2, RelA, RelB и c-Rel, образующих 15 комбинаций димеров. Все белки семейства объединяет наличие домена гомологии Rel, который обеспечивает образование белковых димеров, связывание NF-kB с ДНК и с цитозольным ингибиторным белком IkB. Фактор NF-kB проявляет активность только в димерной форме, причём наиболее распространённые формы — димеры субъединиц p50 или p52 с субъединицей p65.
Белки́ скользя́щего зажима, или скользя́щий зажи́м — белки, которые выполняют функцию усилителя процессивности при репликации ДНК.
Y-РНК — малые некодирующие РНК, входят в состав рибонуклеопротеинов, содержащих белки Ro60 и La, которые являются мишенью аутоантител у пациентов, страдающих системной красной волчанкой и синдромом Шегрена. Они также необходимы для репликации ДНК, так как взаимодействуют с хроматином и инициаторными белками.
Коактиватор — белок, который увеличивает экспрессию генов путём связывания с активатором, который содержит ДНК-связывающий домен. Коактиватор не может связывать ДНК самостоятельно.
Предполагаемая АТФ-зависимая РНК-геликаза DDX17 (р72) — фермент, кодируемый у человека геном DDX17.
Переходный ядерный белок сперматид номер один — белок, который у человека кодируется геном TNP1. Данный белок имеет центральное значение в сперматогенезе. Мутации в этом гене могут вызывать нарушения образования сперматозоидов, тем самым приводя к бесплодию. Белок TNP1 состоит из 54 остатков аминокислот с общей молекулярной массой 6,2 кДа. Аминокислоты аргинин и лизин распределены равномерно и составляют около 40% белка. Цистеин отсутствует. Исследования in vitro показали, что белок TNP1 снижает температуру плавления ДНК, высвобождая ее из нуклеосом. В удлиняющихся сперматозоидах млекопитающих участвует в замене гистонов на протамин.
Переходный ядерный белок сперматид номер два — это белок, который у человека кодируется геном TNP2. Белок состоит из 117 аминокислот. У разных видов последовательность аминокислот различается, что может свидетельствовать об участии его в формировании видовых особенностей строения ядра сперматозоидов. Мутации гена, синтезирующего этот белок, приводят к аномалиям головки сперматозоида и снижению их подвижности. Нарушение в гене TNP2 может компенсироваться активированием гена TNP1.
PML-тельца́ — сферические тельца диаметром 0,1—1,0 мкм, имеющиеся в ядрах клеток многих тканей и большинства линий и входящие в состав ядерного матрикса. Ключевой организующий компонент PML-телец — белок PML, который привлекает в PML-тельца множество разнообразных белков, которые объединяет только способность подвергаться сумоилированию. В тельцах PML белки подвергаются посттрансляционным модификациям, которые приводят к изоляции белков в PML-тельцах, активации или деградации. По морфологическим признакам выделяют несколько подтипов PML-телец, причём все они характеризуются наличием электроноплотной оболочки и внутренней коровой части.
Сигна́л я́дерной локализа́ции — участок молекулы белка, необходимый и достаточный для его локализации в ядре клетки. Сигнал ядерной локализации — это место узнавания белка транспортными факторами — кариоферинами (транспортинами), которые осуществляют его перенос в ядро.
Нуклеофозми́н — ядрышковый белок, у человека кодируется геном NPM1, локализованным на 5-й хромосоме. Нуклеофозмин перемещается между ядром и цитоплазмой и действует как многофункциональный шаперон нуклеиновых кислот, принимающий участие в таких процессах, как биогенез рибосом, ремоделирование хроматина, регуляция митоза, поддержание стабильности генома, репарация ДНК и транскрипция. Нарушения в работе нуклеофозмина могут приводить к развитию злокачественных новообразований и других заболеваний; в частности, мутации, затрагивающие его ген, приводят к развитию острого миелоидного лейкоза.
Ядерные рецепторы — это класс внутриклеточных белков, которые отвечают за восприятие стероидных и тиреоидных гормонов, а также некоторых других молекул. Уникальным свойством ядерных рецепторов, которое отличает их от других классов рецепторов, является их способность напрямую взаимодействовать с геномной ДНК и регулировать экспрессию соседних генов, тем самым контролируя развитие, гомеостаз и метаболизм организма. Следовательно, эти рецепторы классифицируются как факторы транскрипции. Регуляция экспрессии генов ядерными рецепторами обычно происходит только тогда, когда присутствует лиганд-молекула, которая влияет на поведение рецептора. Связывание лиганда с ядерным рецептором приводит к конформационному изменению рецептора, которое, в свою очередь, активирует рецептор, что приводит к усилению или понижению регуляции экспрессии гена.