Пи-теорема

Перейти к навигацииПерейти к поиску

Пи-теорема (-теорема, -теорема) — основополагающая теорема анализа размерностей. Теорема утверждает, что если имеется зависимость между физическими величинами, не меняющая своего вида при изменении масштабов единиц в некотором классе систем единиц, то она эквивалентна зависимости между, вообще говоря, меньшим числом безразмерных величин, где — наибольшее число величин с независимыми размерностями среди исходных величин. Пи-теорема позволяет установить общую структуру зависимости, вытекающую только лишь из требования инвариантности физической зависимости при изменении масштабов единиц, даже если конкретный вид зависимости между исходными величинами неизвестен.

Варианты названия

В русскоязычной литературе по теории размерностей и моделированию обычно используется название пи-теорема (-теорема, -теорема)[1][2][3][4], происходящее от традиционного обозначения безразмерных комбинаций с помощью (прописной или строчной) греческой буквы «пи». В англоязычной литературе теорему обычно связывают с именем Эдгара Букингема, а во франкоязычной — с именем Эме Ваши́[фр.].

Историческая справка

По-видимому, впервые пи-теорема была доказана Ж. Бертраном[5] в 1878 году. Бертран рассматривает частные примеры задач из электродинамики и теории теплопроводности, однако его изложение содержит в отчётливом виде все основные идеи современного доказательства пи-теоремы, а также ясное указание на применение пи-теоремы для моделирования физических явлений. Широкую известность методика применения пи-теоремы (англ. the method of dimensions) получила благодаря работам Рэлея (первое применение пи-теоремы в общем виде[6] к зависимости падения давления в трубопроводе от определяющих параметров относится, вероятно, к 1892 году[7], эвристическое доказательство с использованием разложения в степенной ряд — к 1894 году[8]).

Формальное обобщение пи-теоремы на случай произвольного числа величин было впервые сформулировано Ваши́ в 1892 году[9], а позже и, по-видимому, независимо — А. Федерманом[10], Д. Рябушинским[11] в 1911 году и Бакингемом[12] в 1914 году. Впоследствии пи-теорема обобщена[] Германом Вейлем в 1926 году.

Формулировка теоремы

Для простоты ниже приводится формулировка для положительных величин .

Предположим, что имеется зависимость между физическими величинами , , , :

вид которой не меняется при изменении масштабов единиц в выбранном классе систем единиц (например, если используется класс систем единиц LMT, то вид функции не меняется при любых изменениях эталонов длины, времени и массы, скажем, при переходе от измерений в килограммах, метрах и секундах к измерениям в фунтах, дюймах и часах).

Выберем среди аргументов функции наибольшую совокупность величин с независимыми размерностями (такой выбор можно, вообще говоря, производить различными способами). Тогда если число величин с независимыми размерностями обозначено и они занумерованы индексами , , , (в противном случае их можно перенумеровать), то исходная зависимость эквивалентна зависимости между безразмерными величинами , , , :

где — безразмерные комбинации, полученные из оставшихся исходных величин , , , делением на выбранные величины в соответствующих степенях:

(безразмерные комбинации всегда существуют потому, что , , ,  — совокупность размерно-независимых величин наибольшего размера, и при добавлении к ним ещё одной величины получается совокупность с зависимыми размерностями).

Доказательство

Доказательство пи-теоремы очень простое[13]. Исходную зависимость между , , , можно рассматривать как некоторую зависимость между , , , и , , , :

причём вид функции также не меняется при изменении масштабов единиц. В силу размерной независимости величин , , , всегда можно выбрать такой масштаб единиц, что эти величины станут равными единице, в то время как , , , , будучи безразмерными комбинациями, своих значений не изменят, поэтому при так выбранном масштабе единиц, а значит, в силу инвариантности, и в любой системе единиц, функция фактически зависит только от :

Частные случаи

Применение к уравнению, разрешенному относительно одной величины

Часто используется вариант пи-теоремы для функциональной зависимости одной физической величины от нескольких других , , , :

В этом случае пи-теорема утверждает, что зависимость эквивалентна связи

где

а определяются так же, как и выше.

Случай, когда пи-теорема даёт вид зависимости с точностью до множителя

В одном важном частном случае, когда в зависимости

все аргументы имеют независимые размерности, применение пи-теоремы даёт

то есть вид функциональной зависимости определяется с точностью до константы. Значение константы методами теории размерностей не определяется, и для её нахождения нужно использовать экспериментальные или другие теоретические методы.

Замечания о применении пи-теоремы

  • Выбор аргументов с независимыми размерностями, вообще говоря, можно делать различными способами, в результате чего при применении пи-теоремы формально могут получаться разные выражения. Однако на самом деле получающиеся результаты эквивалентны, и из одной формы записи можно получить другую путём перехода к комбинациям безразмерных параметров.
  • В формулировке пи-теоремы требование инвариантности зависимости является важным. Если, например, при работе в Международной системе единиц (СИ) в эксперименте была получена зависимость пути , пройденного падающим телом, от времени
то в таком виде она не удовлетворяет условиям пи-теоремы.

Применение пи-теоремы для физического моделирования

Пи-теорема применяется для физического моделирования различных явлений в аэродинамике, гидродинамике, теории упругости, теории колебаний. Моделирование основано на том, что если для двух природных процессов («модельного» и «натурного», например, для потока воздуха вокруг модели самолёта в аэродинамической трубе и потока воздуха вокруг реального самолёта) безразмерные аргументы (их называют критерии подобия) в зависимости

совпадают, что может быть осуществлено за счёт специального выбора параметров «модельного» объекта, то и безразмерные значения функции также совпадают. Это позволяет «пересчитывать» размерные экспериментальные значения параметров от «модельного» объекта к «натурному», даже если вид функции неизвестен. Если совпадения всех критериев подобия для «модельного» и «натурного» объектов достичь невозможно, то часто прибегают к приближённому моделированию, когда достигается подобие только по критериям, отражающим влияние наиболее существенных факторов, тогда как влияние второстепенных факторов учитывается приближённо на основе дополнительных соображений (не следующих из теории размерностей).

Примеры применения пи-теоремы

Частота колебаний колокола

Излучение звука колоколом происходит в результате его собственных колебаний, которые могут описываться в рамках линейной теории упругости. Частота издаваемого звука зависит от плотности , модуля Юнга и коэффициента Пуассона металла, из которого сделан колокол, и от конечного числа геометрических размеров , , , колокола:

Если используется класс систем единиц LMT, то в качестве величин с независимыми размерностями можно, например, выбрать , и (выбранные величины, входящие в максимальную размерно-независимую подсистему, подчеркнуты):

и применение пи-теоремы даёт

Если имеются два геометрически подобных колокола из одного и того же материала, то для них аргументы функции совпадают, поэтому отношение их частот обратно пропорционально отношению их размеров (или обратно пропорционально кубическому корню из отношения их масс). Эта закономерность подтверждается экспериментально[14].

Отметим, что если бы в качестве величин с независимыми размерностями были выбраны другие величины, например , и , то применение пи-теоремы дало бы формально другой результат:

но получаемые выводы остались бы, естественно, теми же.

Сопротивление при медленном движении шара в вязкой жидкости

При медленном (при малых числах Рейнольдса) стационарном движении сферы в вязкой жидкости величина силы сопротивления зависит от вязкости жидкости , а также от скорости и радиуса сферы (плотность жидкости не входит в число определяющих параметров, так как при малых скоростях влияние инерции жидкости пренебрежимо мало). Применяя к зависимости

пи-теорему, получаем

т. е. в этой задаче сила сопротивления находится с точностью до константы. Значение константы из соображений размерности не находится (решение соответствующей гидродинамической задачи даёт для константы значение , которое подтверждается экспериментально).

См. также

Ссылки

Примечания

  1. Баренблатт Г. И. Подобие, автомодельность, промежуточная асимптотика. Теория и приложения к геофизической гидродинамике. — Л.: Гидрометеоиздат, 1978. — С. 25. — 208 с.
  2. Седов Л. И. Методы подобия и размерности в механике. — М.: Наука, 1981. — С. 31. — 448 с. Архивировано 15 декабря 2014 года.
  3. Бриджмен П. Анализ размерностей. — Ижевск: РХД, 2001. — С. 45. — 148 с. Архивировано 27 октября 2007 года.
  4. Хантли Г. Анализ размерностей. — М.: Мир, 1970. — С. 6. — 176 с. Архивировано 19 февраля 2014 года. (предисловие к русскому изданию)
  5. Bertrand J. Sur l'homogénété dans les formules de physique // Comptes rendus. — 1878. — Т. 86, № 15. — С. 916—920. Архивировано 9 апреля 2016 года.
  6. Когда после применения пи-теоремы возникает произвольная функция от безразмерных комбинаций.
  7. Rayleigh. On the question of the stability of the flow of liquids // Philosophical magazine. — 1892. — Т. 34. — С. 59—70. Архивировано 13 апреля 2021 года.
  8. Стретт Дж. В. (лорд Рэлей). Теория звука. — М.: ГИТТЛ, 1955. — Т. 2. — С. 348. — 476 с. Архивировано 15 декабря 2014 года.
  9. Vaschy A. Sur les lois de similitude en physique // Annales Télégraphiques. — 1892. — Т. 19. — С. 25–28. Цитаты из статьи Ваши с формулировкой пи-теоремы приводятся в статье: Macagno E. O. Historico-critical review of dimensional analysis // Journal of the Franklin Institute. — 1971. — Т. 292, вып. 6. — С. 391—402. Архивировано 13 апреля 2021 года.
  10. Федерман А. О некоторых общих методах интегрирования уравнений с частными производными первого порядка // Известия Санкт-Петербургского политехнического института императора Петра Великого. Отдел техники, естествознания и математики. — 1911. — Т. 16, вып. 1. — С. 97—155. Архивировано 13 апреля 2021 года.
  11. Riabouchinsky D. Méthode des variables de dimension zéro et son application en aérodynamique // L’Aérophile. — 1911. — С. 407–408. Архивировано 13 апреля 2021 года.
  12. Buckingham E. On physically similar systems: illustrations of the use of dimensional equations // Physical Review. — 1914. — Т. 4, № 4. — С. 345—376. Архивировано 26 апреля 2014 года.
  13. Сена Л. А. Единицы физических величин и их размерности. — М.: Наука, 1977. — С. 91—92.
  14. Пухначёв Ю. Рассеяние, затухание, рефракция — три ключа к разгадке парадокса // Наука и жизнь. — 1983. — № 2. — С. 117—118.