Постоя́нная Пла́нка — основная константа квантовой теории, коэффициент, связывающий величину энергии кванта электромагнитного излучения с его частотой, так же как и вообще величину кванта энергии любой линейной колебательной физической системы с её частотой. Связывает энергию и импульс с частотой и пространственной частотой, действие с фазой. Является квантом момента импульса. Впервые упомянута Максом Планком в работе, посвящённой тепловому излучению, и потому названа в его честь. Обычное обозначение — латинское .
И́мпульс — векторная физическая величина, являющаяся мерой механического движения тела.
Пла́нковское вре́мя — единица времени в планковской системе единиц, величина, имеющая размерность времени и, как и другие планковские единицы, составленная из произведения фундаментальных констант в соответствующих степенях. Физический смысл этой величины — время, за которое волна или частица, не имеющая массы, двигаясь со скоростью света, преодолеет планковскую длину. Планковское время и вся планковская система единиц названа в честь Макса Планка.
Гравитацио́нный ра́диус представляет собой характерный радиус, определённый для любого физического тела, обладающего массой: это радиус сферы, на которой находился бы горизонт событий, создаваемый этой массой, если бы она была распределена сферически симметрично, была бы неподвижной и целиком лежала бы внутри этой сферы. Введён в научный обиход немецким учёным Карлом Шварцшильдом в 1916 году.
Пла́нковская длина́ — величина размерности длины, составленная из фундаментальных констант — скорости света, постоянной Планка и гравитационной постоянной:
- ,
Пла́нковская пло́щадь — единица измерения площади в планковской системе единиц. Определяется как площадь, ограниченная квадратом, длина стороны которого равна планковской длине . Используется в ядерной физике и квантовой теории поля.
Волна́ де Бро́йля — волна вероятности, определяющая плотность вероятности обнаружения объекта в заданном интервале конфигурационного пространства. В соответствии с принятой терминологией говорят, что волны де Бройля связаны с любыми частицами и отражают их волновую природу.
Пла́нковские едини́цы — система единиц измерения, одна из естественных систем единиц. Предложена в 1901 году немецким физиком Максом Планком и названа в его честь.
Пла́нковская температу́ра — единица температуры в планковской системе единиц; названа в честь немецкого учёного-физика Макса Планка.
В физике, планковская угловая частота это единица угловой частоты, обозначаемая как , определённая в терминах фундаментальных констант в натуральных единицах, так же известных как планковские единицы.
Планковская плотность в физике — это единица измерения плотности в планковской системе единиц; обозначается . Планковская плотность определяется как:
- 5,1⋅1096 кг/м³,
Сингулярный реактор — гипотетический источник энергии, где в качестве рабочего тела используются микроскопические чёрные дыры (коллапсары). Принцип работы такого реактора состоит в использовании энергии, выделяющейся при испарении чёрной дыры. Также он может быть использован как реактивный двигатель.
Пла́нковское давле́ние — единица давления в планковской системе единиц, обозначаемая pP, величина, имеющая размерность давления и, как и другие планковские единицы, составленная из произведения фундаментальных констант в соответствующих степенях.
- 4,63309 × 10113 Па,
Виртуальная чёрная дыра — гипотетический объект квантовой гравитации: чёрная дыра, возникшая в результате квантовой флуктуации пространства-времени. Является одним из примеров так называемой квантовой пены и гравитационным аналогом виртуальных электрон-позитронных пар в квантовой электродинамике.
Пла́нковский объём — единица измерения объёма в планковской системе единиц, которая численно равняется кубу планковской длины. Другими словами, это объём куба, длина ребра которого равняется планковской длине.
Масштаб расстояний — принятая в определённой физической теории характерная длина или расстояние, определённое с точностью до порядка величины. Важность концепции масштаба расстояний определяется тем, что нефундаментальные физические явления разных масштабов расстояний не могут влиять друг на друга. Раздельное рассмотрение различных масштабов расстояний позволяет получить для каждого масштаба расстояний самосогласованную физическую теорию, которая описывает только физические явления для данного масштаба расстояний. Редукционизм утверждает, что физические законы в масштабах малых расстояний могут быть использованы для получения эффективного описания в масштабах больших расстояний. Идея о том, что можно вывести описания законов физики в разных масштабах расстояний друг из друга, может быть количественно выражена с помощью ренормализационной группы.