Нейро́нная сеть — математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети У. Маккалока и У. Питтса. После разработки алгоритмов обучения получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.
Иску́сственный нейро́н — узел искусственной нейронной сети, являющийся упрощённой моделью естественного нейрона. Математически искусственный нейрон обычно представляют как некоторую нелинейную функцию от единственного аргумента — линейной комбинации всех входных сигналов. Данную функцию называют функцией активации или функцией срабатывания, передаточной функцией. Полученный результат посылается на единственный выход. Такие искусственные нейроны объединяют в сети — соединяют выходы одних нейронов с входами других. Искусственные нейроны и сети являются основными элементами идеального нейрокомпьютера.
Исследование операций — дисциплина, занимающаяся разработкой и применением методов нахождения оптимальных решений на основе математического моделирования, статистического моделирования и различных эвристических подходов в различных областях человеческой деятельности. Иногда используется название математические методы исследования операций.
Когнитро́н — искусственная нейронная сеть на основе принципа самоорганизации. Своей архитектурой когнитрон похож на строение зрительной коры, имеет иерархическую многослойную организацию, в которой нейроны между слоями связаны только локально. Обучается конкурентным обучением. Каждый слой мозга реализует различные уровни обобщения; входной слой чувствителен к простым образам, таким, как линии, и их ориентации в определенных областях визуальной области, в то время как реакция других слоев является более сложной, абстрактной и независимой от позиции образа. Аналогичные функции реализованы в когнитроне путём моделирования организации зрительной коры.
Нейро́нная сеть Хо́пфилда — полносвязная нейронная сеть с симметричной матрицей связей. В процессе работы динамика таких сетей сходится (конвергирует) к одному из положений равновесия. Эти положения равновесия определяются заранее в процессе обучения, они являются локальными минимумами функционала, называемого энергией сети. Такая сеть может быть использована как автоассоциативная память, как фильтр, а также для решения некоторых задач оптимизации. В отличие от многих нейронных сетей, работающих до получения ответа через определённое количество тактов, сети Хопфилда работают до достижения равновесия, когда следующее состояние сети в точности равно предыдущему: начальное состояние является входным образом, а при равновесии получают выходной образ.
Био́ника — прикладная наука о применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы, то есть формах живого в природе и их промышленных аналогах.
Обучение без учителя — один из способов машинного обучения, при котором испытуемая система спонтанно обучается выполнять поставленную задачу без вмешательства со стороны экспериментатора. С точки зрения кибернетики, это является одним из видов кибернетического эксперимента. Как правило, это пригодно только для задач, в которых известны описания множества объектов, и требуется обнаружить внутренние взаимосвязи, зависимости, закономерности, существующие между объектами.
Перцептро́н — математическая или компьютерная модель восприятия информации мозгом, предложенная Фрэнком Розенблаттом в 1957 году и впервые воплощённая в виде электронной машины «Марк-1» в 1960 году. Перцептрон стал одной из первых моделей нейросетей, а «Марк-1» — первым в мире нейрокомпьютером.
Дерево принятия решений — средство поддержки принятия решений, использующееся в машинном обучении, анализе данных и статистике. Структура дерева представляет собой «листья» и «ветки». На рёбрах («ветках») дерева решения записаны признаки, от которых зависит целевая функция, в «листьях» записаны значения целевой функции, а в остальных узлах — признаки, по которым различаются случаи. Чтобы классифицировать новый случай, надо спуститься по дереву до листа и выдать соответствующее значение.
Интеллектуальная информационная система (ИИС) — комплекс программных, лингвистических и логико-математических средств для реализации основной задачи — осуществления поддержки деятельности человека и поиска информации в режиме продвинутого диалога на естественном языке. ИИС являются разновидностью интеллектуальной системы, а также одним из видов информационных систем.
Обучение с подкреплением — один из способов машинного обучения, в ходе которого испытуемая система (агент) обучается, взаимодействуя с некоторой средой. С точки зрения кибернетики, является одним из видов кибернетического эксперимента. Откликом среды на принятые решения являются сигналы подкрепления, поэтому такое обучение является частным случаем обучения с учителем, но учителем является среда или её модель. Также нужно иметь в виду, что некоторые правила подкрепления базируются на неявных учителях, например, в случае искусственной нейронной среды, на одновременной активности формальных нейронов, из-за чего их можно отнести к обучению без учителя.
Человеческая память ассоциативна, то есть некоторое воспоминание может порождать большую связанную с ним область. Один предмет напоминает нам о другом, а этот другой о третьем. Если позволить нашим мыслям, они будут перемещаться от предмета к предмету по цепочке умственных ассоциаций. Например, несколько музыкальных тактов могут вызвать целую гамму чувственных воспоминаний, включая пейзажи, звуки и запахи. Напротив, обычная компьютерная память является локально адресуемой, предъявляется адрес и извлекается информация по этому адресу.
Дартмутский семинар — двухмесячный научный семинар по вопросам искусственного интеллекта, проведённый летом 1956 года в Дартмутском колледже.
Перцептрон является одной из первых моделей искусственной нейронной сети. Несмотря на то, что модель предложена Фрэнком Розенблаттом в 1957 году, о её возможностях и ограничениях до сегодняшнего дня не всё известно. В 1969 году Марвин Минский и Сеймур Паперт посвятили критике перцептрона целую книгу, которая показала некоторые принципиальные ограничения одной из разновидности перцептронов.
История искусственного интеллекта, как учение о развитии современной науки и технологии создания интеллектуальных машин, имеет свои корни в ранних философских исследованиях природы человека и процесса познания мира, расширенных позднее нейрофизиологами и психологами в виде ряда теорий относительно работы человеческого мозга и мышления. Современной стадией развития науки об искусственном интеллекте является развитие фундамента математической теории вычислений — теории алгоритмов — и создание компьютеров.
Эволюционное моделирование использует признаки теории Дарвина для построения интеллектуальных систем. Является частью более обширной области искусственного интеллекта — вычислительного интеллекта.
В нейробиологии, синхронизацией называют динамический режим, который характеризуется периодической одновременной активацией определенной популяции нейронов, или синхронизацию между локальными колебаниями двух или нескольких популяций нейронов.
Глубокое обучение — совокупность методов машинного обучения, основанных на обучении представлениям, а не специализированных алгоритмах под конкретные задачи. Многие методы глубокого обучения были известны ещё в 1980-е, но результаты не впечатляли, пока продвижения в теории искусственных нейронных сетей и вычислительные мощности середины 2000-х годов не позволили создавать сложные технологические архитектуры нейронных сетей, обладающие достаточной производительностью и позволяющие решать широкий спектр задач, не поддававшихся эффективному решению ранее, например, в компьютерном зрении, машинном переводе, распознавании речи, причём качество решения во многих случаях теперь сопоставимо, а в некоторых превосходит эффективность человека.
Сети адаптивного резонанса — разновидность искусственных нейронных сетей, основанная на теории адаптивного резонанса Стивена Гроссберга и Гейла Карпентера. Включает в себя модели обучения с учителем и без учителя, которые используются при решении задач распознавания образов и предсказания.