Куби́ка или ку́бика — плоская алгебраическая кривая 3-го порядка, то есть множество точек плоскости, заданных кубическим уравнением
Нильмногообразие — это гладкое многообразие, имеющее транзитивную нильпотентную группу диффеоморфизмов, действующих на этом многообразии. Нильмногообразие является примером однородного пространства и диффеоморфно факторпространству , факторгруппе нильпотентной группы Ли N по замкнутой подгруппе H. Термин ввёл Анатолий И. Мальцев в 1951 году.
Бинарная группа икосаэдра 2I или <2,3,5> — это неабелева группа порядка 120. Группа является расширением группы икосаэдра I или (2,3,5) порядка 60 циклической группой порядка 2 и является прообразом группы икосаэдра при 2:1 накрывающем гомоморфизме
В математике проективная специальная линейная группа PSL(2, 7) — это конечная простая группа, имеющая важные приложения в алгебре, геометрии и теории чисел. Она является группой автоморфизмов квартики Клейна, а также группой симметрии плоскости Фано. Имея 168 элементов, PSL(2, 7) является второй по величине из самых маленьких неабелевых простых групп.
Поверхность Гурвица — компактная риманова поверхность, имеющая в точности
- 84(g − 1)
Группа треугольника (2,3,7) — треугольная группа (группа фон Дика) D(2,3,7) сохраняющих ориентацию отображений. Важный объект в теории римановых поверхностей и геометрии Лобачевского в связи с поверхностями Гурвица, а именно[уточнить] с римановыми поверхностями рода g с максимально высоким возможным порядком группы автоморфизмов, равным 84(g − 1).
Конфигурация Гессе — конфигурация 9 точек и 12 прямых с тремя точками на каждой прямой и с четырьмя прямыми, проходящих через каждую точку. Её рассматривал Колин Маклорен и изучал Отто Гессе (1844), Конфигурация реализуема в комплексной проективной плоскости как множество точек перегиба эллиптической кривой, но не существует реализации на евклидовой плоскости.
Кэлерово многообразие — многообразие с тремя взаимно совместимыми структурами: комплексной структурой, римановой метрикой и симплектической формой.
Конфигурация Сильвестра — Галлаи состоит из конечного подмножества точек проективного пространства со свойством, что прямая через любые две точки подмножества проходит также по меньшей мере ещё через одну точку подмножества.
Теорема Гурвица об автоморфизмах ограничивает порядок группы автоморфизмов — сохраняющих ориентацию конформных отображений — компактной римановой поверхности рода g > 1, утверждая, что число таких автоморфизмов не может превышать 84(g − 1). Группа, для которой достигается максимум, называется группой Гурвица, а соответствующая поверхность Римана — поверхностью Гурвица. Поскольку компактные поверхности Римана являются синонимом неособых комплексных проективных алгебраических кривых, поверхность Гурвица может называться также кривой Гурвица. Теорема названа именем Адольфа Гурвица, который доказал её в 1893 году.
Дедекиндова группа — это группа, всякая подгруппа которой нормальна.
Теорема Бейкера — Хегнера — Старка — утверждение алгебраической теории чисел о том, какие в точности квадратичные комплексные числовые поля позволяют единственное разложение в его кольце целых чисел. Теорема решает специальный случай гауссовой задачи числа классов, в которой требуется определить число мнимых квадратичных полей, которые имеют заданное фиксированное число классов.
Модулярная кривая — это риманова поверхность или соответствующая алгебраическая кривая, построенная как фактор комплексной верхней половины плоскости H по конгруэнтной подгруппе модулярной группы целочисленных 2×2 матриц SL(2, Z). Термин модулярная кривая может также использоваться для ссылок на компактифицированные модулярные кривые , которые являются компактификациями, полученными добавлением конечного числа точек к фактору. Точки модулярной кривой параметризуют классы изоморфизмов эллиптических кривых, вместе с некоторой дополнительной структурой, зависящей от группы . Эта интерпретация позволяет дать чисто алгебраическое определение модулярных кривых без ссылок на комплексные числа, и, более того, доказывает, что модулярные кривые являются полем определения либо над полем Q рациональных чисел, либо над круговым полем. Последний факт и его обобщения имеют фундаментальную важность в теории чисел.
Многообразие Шимуры — аналог модулярной кривой в более высоких размерностях, который возникает как фактор эрмитова симметрического пространства по конгруэнтной подгруппе редуктивной алгебраической группе, определённой над Q. Термин «многообразие Шимуры» относится к высоким размерностям, в случае одномерных многообразий говорят о кривых Шимуры. Модулярные поверхности Гильберта и модулярные многообразия Зигеля находятся среди лучших известных классов многообразий Шимуры.
Поверхность Хопфа — это компактная комплексная поверхность, получаемая как фактор комплексного векторного пространства C2 \ 0 по свободно действующей конечной группе. Если эта группа является группой целых чисел, поверхность Хопфа называется примарной, в противном случае — вторичной. Первый пример такой поверхности нашёл Хопф с дискретной группой, изоморфной группе целых чисел и генератором, действующим на C2 путём умножения на 2. Это был первый пример компактной комплексной поверхности без кэлеровой метрики.
Фальшивая проективная плоскость — это одна из 50 комплексных алгебраических поверхностей, которые имеют те же числа Бетти, что и у проективной плоскости, но не гомеоморфны ей. Такие объекты всегда являются алгебраическими поверхностями общего вида.
Поверхность Больцы (кривая Больцы) — компактная риманова поверхность рода 2 с максимальным возможным порядком конформной группы автоморфизмов для этого порядка, а именно, с группой GL2(3) порядка 48. Полная группа автоморфизмов (включая отражения) является полупрямым произведением порядка 96. Аффинная модель поверхности Больцы может быть получена как геометрическое место точек, удовлетворяющих уравнению
Но́ам Дэ́вид Э́лкис — американский математик, профессор математики Гарвардского университета. Основные труды — в области теории чисел и комбинаторики.
Систолические неравенства для кривых на поверхностях первым изучал Чарльз Лёвнер в 1949 году. Если дана замкнутая поверхность, её систола, обозначаемая как sys, определяется как петля наименьшей длины, которая не может быть стянута в точку на поверхности. Систолическая площадь метрики определяется как отношение площади и sys2. Систолическое отношение SR равно обратной величине, то есть sys2/площадь. См. также статью Введение в систолическую геометрию.
Кривая Бринга — кривая, задаваемая выражением