Топологи́ческое простра́нство — множество, для элементов которого определено, какие из них близки друг к другу. Является центральным понятием общей топологии.
В этом глоссарии приведены определения основных терминов, используемых в общей топологии. Курсивом выделены ссылки внутри глоссария.
Гомеоморфи́зм — непрерывная биекция с непрерывной обратной. Является центральным понятием топологии.
Тополо́гия Зари́сского, или топология Зариского, — специальная топология, отражающая алгебраическую природу алгебраических многообразий. Названа в честь Оскара Зарисского и, начиная с 1950-х годов, занимает важное место в алгебраической геометрии.
Алгебраическая геометрия — раздел математики, который объединяет алгебру и геометрию. Главным предметом изучения классической алгебраической геометрии, а также в широком смысле и современной алгебраической геометрии, являются множества решений систем алгебраических уравнений. Современная алгебраическая геометрия во многом основана на методах общей алгебры для решения задач, возникающих в геометрии.
Многообра́зие — локально евклидово пространство.
Вторая квадратичная форма поверхности ― квадратичная форма на касательном расслоении поверхности, которая, в отличие от первой квадратичной формы, определяет внешнюю геометрию поверхности в окрестности данной точки.
Алгебраическая кривая, или плоская алгебраическая кривая, — это геометрическое место (множество) точек на плоскости (O;x,y), которое определяется как множество нулей многочлена от двух переменных. Степенью (или порядком) n этой кривой называется степень этого многочлена. Алгебраические кривые степеней n = 1, 2, 3, …, 8 кратко называются прямыми, кониками, кубиками, квартиками, пентиками, секстиками, септиками, октиками соответственно. Например, единичная окружность — это алгебраическая кривая степени 2 (коника), так как она задаётся уравнением x2 + y2 − 1 = 0.
Спектр кольца в математике — множество всех простых идеалов данного коммутативного кольца. Обычно спектр снабжается топологией Зарисского и пучком коммутативных колец, что делает его локально окольцованным пространством. Спектр кольца обозначается .
О́бщее положе́ние — свойство, которое выполняется почти всюду, то есть почти для всех рассматриваемых объектов. Математический термин, используемый в основном в геометрии, значение которого зависит от контекста и который применяется обычно в следующих словосочетаниях:
- «объекты, находящиеся в общем положении, имеют свойство S»,
- «S есть свойство общего положения»,
- «приведение объектов в общее положение»,
Схе́ма — математическая абстракция, позволяющая связать алгебраическую геометрию, коммутативную алгебру и дифференциальную геометрию и переносить идеи из одной области в другую. В первую очередь понятие схемы позволяет перенести геометрическую интуицию и геометрические конструкции, такие как тензорные поля, расслоения и дифференциалы, в теорию колец. Исторически теория схем возникла с целью обобщения и упрощения классической алгебраической геометрии итальянской школы XIX века, занимавшейся исследованием полиномиальных уравнений.
Гладкое многообразие — многообразие, наделенное гладкой структурой. Гладкие многообразия являются естественной базой для построения дифференциальной геометрии. На дифференциальных многообразиях вводятся дополнительные инфинитезимальные структуры — касательное пространство, ориентация, метрика, связность и т. д., и изучаются те свойства, связанные с этими объектами, которые инвариантны относительно группы диффеоморфизмов, сохраняющих дополнительную структуру.
Алгебраическое многообразие — центральный объект изучения алгебраической геометрии. Классическое определение алгебраического многообразия — множество решений системы алгебраических уравнений над действительными или комплексными числами. Современные определения обобщают его различными способами, но стараются сохранить геометрическую интуицию, соответствующую этому определению.
Касательное пространство Зарисского — конструкция в алгебраической геометрии, позволяющая построить касательное пространство в точке алгебраического многообразия. Эта конструкция использует не методы дифференциальной геометрии, а только методы общей, и, в более конкретных ситуациях, линейной алгебры.
Вложение Сегре используется в проективной геометрии для того, чтобы рассматривать прямое произведение двух проективных пространств как проективное многообразие. Названо в честь итальянского математика Беньямино Сегре.