Лине́йная а́лгебра — раздел алгебры, изучающий математические объекты линейной природы: векторные пространства, линейные отображения, системы линейных уравнений. Среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают из изучения линейных пространств, но как таковые относятся к полилинейной алгебре.
Квадратичная форма — функция на векторном пространстве, задаваемая однородным многочленом второй степени от координат вектора.
Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, который представляет собой совокупность строк и столбцов, на пересечении которых находятся его элементы. Количество строк и столбцов задаёт размер матрицы. Матрицу можно также представить в виде функции двух дискретных аргументов. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Жорданова матрица — квадратная блочно-диагональная матрица над полем , с блоками вида
В математике квадра́тная ма́трица — это матрица, у которой число строк совпадает с числом столбцов, и это число называется порядком матрицы. Любые две квадратные матрицы одинакового порядка можно складывать и умножать.
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная матрица, поэтому собственные векторы и собственные значения часто определяются в контексте использования таких матриц.
Нормальная матрица — комплексная квадратная матрица , коммутирующая со своей эрмитово-сопряжённой матрицей:
- .
В линейной алгебре, фробениусовой нормальной формой линейного оператора А называется каноническая форма его матрицы, соответствующая минимальному разложению линейного пространства в прямую сумму инвариантных относительно А подпространств, которые могут быть получены как линейная оболочка некоторого вектора и его образов под действием А. Она будет блочно-диагональной матрицей, состоящей из фробениусовых клеток вида
Разложе́ние ма́трицы — представление матрицы в виде произведения матриц, обладающих некоторыми определёнными свойствами. У каждого класса матричных разложений имеется своя область применения; в частности, многие эффективные алгоритмы вычислительной линейной алгебры основаны на построении соответствующих матричных разложений.
Решётка — набор векторов евклидова пространства , образующий дискретную группу по сложению.
В математике, норма́льная фо́рма — простейший либо канонический вид, к которому объект приводится эквивалентными преобразованиями.
Полилине́йная а́лгебра — раздел алгебры, обобщающий понятия линейной алгебры на функции нескольких переменных, линейные по каждому из аргументов.
Структурная теорема для конечнопорождённых модулей над областями главных идеалов является обобщением теоремы о классификации конечнопорождённых абелевых групп. Эта теорема предоставляет общий способ понимания некоторых результатов о канонических формах матриц.
Нормальная форма Смита — это диагональная матрица над областью главных идеалов, каждый следующий диагональный элемент которой делится на предыдущий. Любую матрицу над областью главных идеалов можно привести к нормальной форме Смита путём умножения слева и справа на обратимые матрицы.
Разложение Шура — разложение матрицы на унитарную, верхнюю треугольную и обратную унитарную матрицы, названное именем Исая Шура.
Алгоритм вычисления собственных значений — алгоритм, позволяющий определить собственные значения и собственные векторы заданной матрицы. Создание эффективных и устойчивых алгоритмов для этой задачи является одной из ключевых задач вычислительной математики.
В математике, матричная функция — это функция, отображающая матрицу в другую матрицу.
В линейной алгебре квадратная матрица A называется диагонализируемой, если она подобна диагональной матрице, то есть если существует невырожденная матрица P, такая что P−1AP является диагональной матрицей. Если V — конечномерное векторное пространство, то линейное отображение T : V → V называется диагонализируемым, если существует упорядоченный базис в V, при котором T представляется в виде диагональной матрицы. Диагонализацией называется процесс нахождения соответствующей диагональной матрицы для диагонализируемой матрицы или линейного отображения. Квадратная матрица, которую нельзя диагонализировать, называется дефектной.
Обобщённый собственный вектор матрицы — вектор, который удовлетворяет определённым критериям, которые слабее, чем критерии для (обычных) собственных векторов.