Произво́дная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную, называют дифференцируемой.
Динамическая система — множество элементов, для которого задана функциональная зависимость между временем и положением в фазовом пространстве каждого элемента системы. Данная математическая абстракция позволяет изучать и описывать эволюцию систем во времени.
Фазовое пространство в математике и физике — пространство, на котором представлено множество всех состояний системы так, что каждому возможному состоянию системы соответствует точка фазового пространства.
Раскрытие неопределённостей — методы вычисления пределов функций, заданных формулами, которые в результате формальной подстановки в них предельных значений аргумента теряют смысл, то есть переходят в выражения типа:
Преобразова́ние Лапла́са (ℒ) — интегральное преобразование, связывающее функцию комплексного переменного (изображение) с функцией вещественного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются дифференциальные и интегральные уравнения.
Устойчивость — свойство решения дифференциального уравнения притягивать к себе другие решения при условии достаточной близости их начальных данных. В зависимости от характера притяжения выделяются различные виды устойчивости. Устойчивость является предметом изучения таких дисциплин, как теория устойчивости и теория динамических систем.
Формулы Фруллани относятся к нахождению несобственных интегралов Римана вида:
Статистическая механика или статистическая термодинамика — механика больших ансамблей относительно простых систем, таких как атомы в кристалле, молекулы в газе, фотоны в лазерном пучке, звёзды в галактике, автомобили на шоссе. Статистическая механика использует статистические методы для определения свойств и поведения макроскопических физических систем, находящихся в термодинамическом равновесии, на основе их микроскопической структуры и законов движения, которые считаются заданными. Статистические методы были введены в этом контексте Максвеллом в серии из трех статей (1860—1879) и Больцманом в серии из четырёх статей (1870—1884), которые заложили основы кинетической теории газов. Классическая статистическая механика была основана Гиббсом (1902); а позднее описание микроскопических состояний на основе классической механики было исправлено и дополнено в соответствии с квантовой механикой. Термодинамика, кинетическая теория и статистическая механика — это дисциплины, связанные объектом исследования, но отличающиеся используемыми методами; часто они представлены вместе под общим названием статистической физики. Последовательное построение неравновесной статистической механики было выполнено Н. Н. Боголюбовым в 1946 году. При описании систем в рамках статистической механики используется понятие среднего по ансамблю. Основными уравнениями статистической механики являются уравнения Лиувилля и цепочка уравнений Боголюбова.
Временно́е среднее функции по траектории динамической системы — это предел чезаровских средних значений функции в точках траектории.
Энтропия динамической системы — число, выражающее степень хаотичности траекторий динамической системы. Различают метрическую энтропию, описывающую хаотичность динамики в системе с инвариантной мерой для случайного выбора начального условия по этой мере, и топологическую энтропию, описывающую хаотичность динамики без предположения о законе выбора начальной точки.
В теории устойчивости решений дифференциальных уравнений функция Ляпунова — скалярная функция, используемая для исследования устойчивости решений обыкновенного дифференциального уравнения или системы обыкновенных дифференциальных уравнений с помощью второго (прямого) метода Ляпунова.
Постоя́нная Хи́нчина — вещественная константа , равная среднему геометрическому элементов разложения в цепную дробь любого из почти всех вещественных чисел.
Главное значение интеграла по Коши — это обобщение понятия интеграла Римана, которое позволяет вычислять некоторые расходящиеся несобственные интегралы. Идея главного значения интеграла по Коши заключается в том, что при приближении интервалов интегрирования к особой точке с обеих сторон «с одинаковой скоростью» особенности нивелируют друг друга, и в результате можно получить конечную границу, которая и называется главным значением интеграла по Коши. Эта концепция имеет важные применения в комплексном анализе.