Кольцо́ в общей алгебре — алгебраическая структура, в которой определены операция обратимого сложения и операция умножения, по свойствам похожие на соответствующие операции над числами. Простейшими примерами колец являются совокупности чисел, совокупности числовых функций, определённых на заданном множестве. Во всех случаях имеется множество, похожее на совокупности чисел в том смысле, что его элементы можно складывать и умножать, причём эти операции ведут себя естественным образом.
В этой статье приведены основные термины, используемые в теории групп. Курсив обозначает внутреннюю ссылку на данный глоссарий. В конце приводится таблица основных обозначений, применяемых в теории групп.
Простая группа — группа, не имеющая нормальных подгрупп, отличных от всей группы и единичной подгруппы.
Гру́ппа — множество, на котором определена ассоциативная бинарная операция, причём для этой операции имеется нейтральный элемент, и каждый элемент множества имеет обратный. Раздел общей алгебры, занимающийся группами, называется теорией групп.
Нильпотентная группа — естественное обобщение понятия абелевой группы.
Двойственность Понтрягина — обобщение преобразования Фурье на локально компактные абелевы группы.
Теорема о классификации простых конечных групп — теорема теории групп, классифицирующая с точностью до изоморфизма простые конечные группы.
Алгебраическая группа — это группа, являющаяся одновременно алгебраическим многообразием, причём групповая операция и операция взятия обратного элемента являются регулярными отображениями многообразий.
Квазициклическая p-группа, для фиксированного простого числа p — это единственная p-группа, в которой из любого элемента можно извлечь ровно p корней p-й степени. Обычно обозначается как Z(p∞)
Хопфова группа — группа, не изоморфная ни одной из своих собственных факторгрупп.
Модулярная кривая — это риманова поверхность или соответствующая алгебраическая кривая, построенная как фактор комплексной верхней половины плоскости H по конгруэнтной подгруппе модулярной группы целочисленных 2×2 матриц SL(2, Z). Термин модулярная кривая может также использоваться для ссылок на компактифицированные модулярные кривые , которые являются компактификациями, полученными добавлением конечного числа точек к фактору. Точки модулярной кривой параметризуют классы изоморфизмов эллиптических кривых, вместе с некоторой дополнительной структурой, зависящей от группы . Эта интерпретация позволяет дать чисто алгебраическое определение модулярных кривых без ссылок на комплексные числа, и, более того, доказывает, что модулярные кривые являются полем определения либо над полем Q рациональных чисел, либо над круговым полем. Последний факт и его обобщения имеют фундаментальную важность в теории чисел.
Программа Ленглендса — сеть далеко идущих математических гипотез о связях между теорией чисел и геометрией, предложенная Робертом Ленглендсом в 1967 и 1970 годы. Основная цель — связать группы Галуа в алгебраической теории чисел с автоморфными формами и теорией представлений алгебраических групп над локальными полями и аделями. Считается одним из крупнейших математических исследовательских проектов XX века, отмечалась Эдвардом Френкелем как «теория великого объединения математики».
Упорядоченная группа — группа, для всех элементов которой определён линейный порядок, согласованный с групповой операцией. Вообще говоря, группа может быть не коммутативной.
Тео́рия поле́й кла́ссов изучает абелевы расширения некоторых типов полей.