Тополо́гия — раздел математики, изучающий:
- в самом общем виде — явление непрерывности;
- в частности — свойства пространств, которые остаются неизменными при непрерывных деформациях. Например, связность, ориентируемость, компактность.
Топологи́ческое простра́нство — множество, для элементов которого определено, какие из них близки друг к другу. Является центральным понятием общей топологии.
Непреры́вное отображе́ние — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Хаусдорфово пространство — топологическое пространство, удовлетворяющее сильной аксиоме отделимости T2.
В этом глоссарии приведены определения основных терминов, используемых в общей топологии. Курсивом выделены ссылки внутри глоссария.
Полное метрическое пространство — метрическое пространство, в котором каждая фундаментальная последовательность сходится.
Метри́ческое простра́нство — множество вместе со способом измерения расстояния между его элементами. Является центральным понятием геометрии и топологии.
Сепара́бельное пространство — топологическое пространство, в котором можно выделить счётное всюду плотное подмножество.
Компа́ктное простра́нство — определённый тип топологических пространств, обобщающий свойства ограниченности и замкнутости в евклидовых пространствах на произвольные топологические пространства.
Простра́нство — понятие, используемое в различных разделах знаний.
- Пространство — философское понятие.
Категория Бэра — один из способов различать «большие» и «маленькие» множества. Подмножество топологического пространства может быть первой или второй категории Бэра.
Размерность Лебега или топологическая размерность — размерность, определённая посредством покрытий, важнейший инвариант топологического пространства. Размерность Лебега пространства обычно обозначается .
Преде́л — объект, представляющий собой воображаемую или реальную границу для другого объекта.
Ограниченность в математике — свойство множеств, указывающее на конечность размера в контексте, определяемом категорией пространства.
Вполне регулярное пространство или тихоновское пространство — топологическое пространство, удовлетворяющее аксиомам отделимости T1 и T3½, то есть такое топологическое пространство, в котором все одноточечные множества замкнуты и для любого замкнутого множества и точки вне его существует непрерывная числовая функция, равная единице на множестве и нулю в точке (А. Н. Тихонов, 1930).
Дискре́тное простра́нство в общей топологии и смежных областях математики — это пространство, все точки которого изолированы друг от друга в некотором смысле.
В математике пределом последовательности элементов метрического пространства или топологического пространства называют элемент того же пространства, который обладает свойством «притягивать» элементы заданной последовательности. Пределом последовательности элементов топологического пространства является такая точка, каждая окрестность которой содержит все элементы последовательности, начиная с некоторого номера. В метрическом пространстве окрестности определяются через функцию расстояния, поэтому понятие предела формулируется на языке расстояний. Исторически первым было понятие предела числовой последовательности, возникающее в математическом анализе, где оно служит основанием для системы приближений и широко используется при построении дифференциального и интегрального исчислений.
Анализ — объединение нескольких разделов математики, исторически выросшее из классического математического анализа и охватывающее, кроме дифференциального и интегрального исчислений, входящих в классическую часть, такие разделы, как теории функций вещественной и комплексной переменной, теории дифференциальных и интегральных уравнений, вариационное исчисление, гармонический анализ, функциональный анализ, теорию динамических систем и эргодическую теорию, глобальный анализ. Нестандартный анализ находится на стыке математической логики и анализа, применяет методы теории моделей для альтернативной формализации, прежде всего, классических разделов.
G-дельта-множество — борелевское множество в топологическом пространстве, которое является счётным пересечением открытых множеств.