Кони́ческое сече́ние, или ко́ника, — пересечение плоскости с поверхностью прямого кругового конуса. Существует три главных типа конических сечений: эллипс, парабола и гипербола, кроме того, существуют вырожденные сечения: точка, прямая и пара прямых. Окружность можно рассматривать как частный случай эллипса. Кроме того, параболу можно рассматривать как предельный случай эллипса, один из фокусов которого бесконечно удалён.
Инве́рсия относительно окружности — преобразование евклидовой плоскости, переводящее обобщённые окружности в обобщённые окружности, при котором одна из окружностей поточечно переводится в себя.
Подъёмная си́ла — составляющая полной аэродинамической силы, перпендикулярная вектору скорости движения тела в потоке жидкости или газа, возникающая в результате несимметричности обтекания тела потоком. Полная аэродинамическая сила — это интеграл от давления вокруг контура профиля крыла.
Логарифми́ческая спира́ль или изогональная спираль — особый вид спирали, часто встречающийся в природе.
Аэродинами́ческое ка́чество летательного аппарата — отношение подъёмной силы к лобовому сопротивлению в поточной системе координат при данном угле атаки.
Лобовое сопротивление — сила, препятствующая движению тел в жидкостях и газах. Лобовое сопротивление складывается из двух типов сил: сил касательного (тангенциального) трения, направленных вдоль поверхности тела, и сил давления, направленных по нормали к поверхности. Сила сопротивления является диссипативной силой и всегда направлена против вектора скорости тела в среде. Наряду с подъёмной силой является составляющей полной аэродинамической силы.
Авторота́ция — режим вращения воздушного винта летательного аппарата или турбины двигателя, при котором энергия, необходимая для вращения, отбирается от набегающего на винт потока. Термин появился между 1915 и 1920 годами в период начала разработок вертолётов и автожиров и означает вращение несущего винта без участия двигателя.
В аэродинамике профиль — форма поперечного сечения крыла, лопасти, паруса или другой гидроаэродинамической конструкции.
Крыло в авиационной технике — поверхность для создания подъёмной силы.
Аэродинами́ческий фо́кус тела, обтекаемого потоком — точка, относительно которой суммарный момент аэродинамических сил имеет постоянную величину, не зависящую от угла атаки, иначе говоря — точка приложения вектора прироста подъёмной силы, вызванного изменением угла атаки.
Срыв (отрыв) потока — отделение потока газа или жидкости, обтекающего тело, от его поверхности вследствие отрыва пограничного слоя, вызванного его торможением при неблагоприятном градиенте давления.
Крутка крыла — изменение профиля крыла по его длине, направленное на то, чтобы срыв потока при сваливании начинался с корневой части крыла. При этом элероны, находящиеся в оконечной части крыла, продолжают действовать и обеспечивают пилота эффективным средством для выхода из критического режима полёта.
Поля́рный треуго́льник — понятие сферической тригонометрии.
Экваториа́льная систе́ма координа́т — система небесных координат, в которой фундаментальной плоскостью является плоскость небесного экватора. Экваториальная система координат имеет две формы: первую и вторую экваториальные системы. Первая из них связана с земным шаром и вращается вместе с ним, вторая неподвижна относительно удалённых звёзд.
Адапти́вное управля́емое крыло — крыло самолёта, профиль которого принимает форму, близкую к оптимальной на каждом заданном режиме полёта. Конструкция такого крыла позволяет плавно отклонять носовую и хвостовую часть крыла, изменяя таким образом кривизну вдоль размаха в зависимости от высоты, скорости полёта и перегрузки. Адаптивное крыло предназначается в основном для многоцелевых и высокоманёвренных самолётов. Управление элементами крыла осуществляется высокоавтоматизированной электродистанционной вариативной системой.
Кольцевое (овальное) крыло — разновидность аэродинамической схемы крыла, конструкция которого имеет кольцевидную форму при виде спереди. По аэродинамическим характеристикам самолёт с кольцевым (замкнутым) крылом отличается от традиционных машин с плоскими или закруглёнными крыльями.
Аэродинами́ческий гре́бень — вспомогательная вертикальная аэродинамическая поверхность самолёта, предназначенная для повышения его путевой статической устойчивости. Располагается в плоскости симметрии самолёта на хвостовой части фюзеляжа (форкиль), под фюзеляжем или на поверхности консоли крыла, иногда устанавливают на носовой части фюзеляжа для взаимодействия с вертикальным оперением. Аэродинамические гребни крыла препятствуют перетеканию воздушного потока от фюзеляжа к концевым сечениям крыла, затягивая тем самым начало развития концевого срыва. Следовательно, гребни крыла также способствуют улучшению поперечной устойчивости самолёта на больших углах атаки. Форкиль увеличивает путевую статическую устойчивость самолёта на больших углах скольжения. Форкиль с подфюзеляжным гребнем изменяют характер обтекания фюзеляжа при скольжении. Приближенно можно считать, что фюзеляж без форкиля и гребня при скольжении обтекается потоком как цилиндрическое тело. При наличии форкиля и гребня коэффициент лобового сопротивления увеличивается, а следовательно, и увеличивается стабилизирующий путевой момент при нарушении бокового равновесия самолёта в полёте. Это сделано для улучшения противоштопорных свойств самолёта. Плоский штопор у самолёта исключен, а благодаря мощному вертикальному оперению обеспечен простой вывод самолёта из режима установившегося крутого штопора. Наличие же форкиля, кроме того, улучшает обтекание киля. Один или несколько подфюзеляжных гребней, расположенных под углом к плоскости симметрии, повышают путевую статическую устойчивость самолёта на больших углах атаки. Аэродинамические гребни могут выполняться убирающимися.
Корнево́й наплы́в крыла́ — часть крыла самолёта, выступающая из обвода основной трапеции. Обеспечивает улучшение аэродинамических характеристик при высоких углах атаки, дестабилизирует килевое раскачивание и тем самым повышает маневренность самолёта. Наличие наплыва увеличивает эффективную площадь крыла и вызывает уменьшение относительной кривизны и толщины профиля, что способствует увеличению критического числа Маха.
Автомодельное течение — течение жидкости (газа), которое остается механически подобным самому себе при изменении одного или нескольких параметров, определяющих это течение. В механически подобных явлениях наряду с пропорциональностью геометрических размеров соблюдается пропорциональность механических величин — скоростей, давлений, сил и др.. Условием автомодельности является отсутствие в рассматриваемой стационарной или нестационарной задаче характерных линейных размеров.