Единицы количества информации используются в технике для измерения ёмкости компьютерной памяти и объёма данных, передаваемых по каналам связи. В теории информации также используются для определения количества информации как меры изменения энтропии.
Информацио́нная энтропи́я — мера неопределённости некоторой системы, в частности, непредсказуемость появления какого-либо символа первичного алфавита. В последнем случае при отсутствии информационных потерь энтропия численно равна количеству информации на символ передаваемого сообщения.
Циклический избыточный код — алгоритм нахождения контрольной суммы, предназначенный для проверки целостности данных. CRC является практическим приложением помехоустойчивого кодирования, основанным на определённых математических свойствах циклического кода.
Теоремы Шеннона для канала с шумами связывают пропускную способность канала передачи информации и существование кода, который возможно использовать для передачи информации по каналу с ошибкой, стремящейся к нулю.
RSA — криптографический алгоритм с открытым ключом, основывающийся на вычислительной сложности задачи факторизации больших полупростых чисел.
Двоичный (бинарный) поиск — классический алгоритм поиска элемента в отсортированном массиве (векторе), использующий дробление массива на половины. Используется в информатике, вычислительной математике и математическом программировании.
Двои́чная ку́ча, пирами́да, или сортиру́ющее де́рево — такое двоичное дерево, для которого выполнены три условия:
- Значение в любой вершине не меньше, чем значения её потомков.
- Глубина всех листьев различается не более чем на 1 слой.
- Последний слой заполняется слева направо без «дырок».
Коды Голомба — семейство энтропийных кодов. Под кодом Голомба может подразумеваться также один из представителей этого семейства.
Диаграмма Вороного конечного множества точек S на плоскости представляет такое разбиение плоскости, при котором каждая область этого разбиения образует множество точек, более близких к одному из элементов множества S, чем к любому другому элементу множества.
В информатике временна́я сложность алгоритма определяется как функция от длины строки, представляющей входные данные, равная времени работы алгоритма на данном входе. Временная сложность алгоритма обычно выражается с использованием нотации «O» большое, которая учитывает только слагаемое самого высокого порядка, а также не учитывает константные множители, то есть коэффициенты. Если сложность выражена таким способом, говорят об асимптотическом описании временной сложности, то есть при стремлении размера входа к бесконечности. Например, если существует число , такое, что время работы алгоритма для всех входов длины не превосходит , то временную сложность данного алгоритма можно асимптотически оценить как .
Код с малой плотностью проверок на чётность — используемый в передаче информации код, частный случай блочного линейного кода с проверкой чётности. Особенностью является малая плотность значимых элементов проверочной матрицы, за счёт чего достигается относительная простота реализации средств кодирования.
Ту́рбокод — параллельный каскадный блоковый систематический код, способный исправлять ошибки, возникающие при передаче цифровой информации по каналу связи с шумами. Синонимом турбокода является известный в теории кодирования термин — каскадный код.
BCJR-алгоритм — алгоритм декодирования по методу максимума апостериорной вероятности (МАP) контролирующих ошибки кодов, определённых на решётках. Алгоритм обычно используется для итеративных схем декодирования кодов, таких как турбо-коды и код с малой плотностью проверок на чётность (LDPC-код).
Умножение Карацубы — метод быстрого умножения, позволяющий перемножать два -значных числа с битовой вычислительной сложностью .
Постквантовая криптография — часть криптографии, которая остаётся актуальной и при появлении квантовых компьютеров и квантовых атак. Так как по скорости вычисления традиционных криптографических алгоритмов квантовые компьютеры значительно превосходят классические компьютерные архитектуры, современные криптографические системы становятся потенциально уязвимыми для криптографических атак. Большинство традиционных криптосистем опирается на проблемы факторизации целых чисел или задачи дискретного логарифмирования, которые будут легко разрешимы на достаточно больших квантовых компьютерах, использующих алгоритм Шора. Многие криптографы в настоящее время ведут разработку алгоритмов, независимых от квантовых вычислений, то есть устойчивых к квантовым атакам.
Группа Григорчука — первый пример конечнопорождённой группы промежуточного роста.
Ласло Бабаи — венгерский и американский учёный, профессор математики и информатики в Чикагском университете. Его исследования сосредоточены в следующих отраслях: теория сложности вычислений, теория алгоритмов, комбинаторика, и конечные группы с акцентом на взаимодействие между этими отраслями. Автор более 180 научных трудов.
В математике и информатике сертификат простоты — это строгое доказательство того, что число является простым. Наличие сертификата простоты позволяет проверить, что число простое, не прибегая к тестам простоты.