Кликой неориентированного графа называется подмножество его вершин, любые две из которых соединены ребром. Клики являются одной из основных концепций теории графов и используются во многих других математических задачах и построениях с графами. Клики изучаются также в информатике — задача определения, существует ли клика данного размера в графе является NP-полной. Несмотря на эту трудность, изучаются многие алгоритмы для поиска клик.
В теории графов граф называется хордальным, если каждый из его циклов, имеющих четыре ребра и более, имеет хорду.
В теории графов графом без клешней называется граф, который не содержит порождённых подграфов, изоморфных K1,3 (клешней).
В теории графов совершенным графом называется граф, в котором хроматическое число любого порождённого подграфа равно размеру максимальной клики этого подграфа. Благодаря строгой теореме о совершенных графах, с 2002 года известно, что совершенные графы — это то же самое, что и графы Бержа. Граф G является графом Бержа если ни G, ни его дополнение не имеет порождённых циклов нечётной длины.
В теории графов ладе́йным гра́фом называется граф, представляющий все допустимые ходы ладьи на шахматной доске — каждая вершина представляет клетку на доске, а рёбра представляют возможные ходы. Ладейные графы являются крайне симметричными совершенными графами — их можно описать в терминах числа треугольников, которым принадлежит ребро и существования цикла длины 4, включающего любые две несмежные вершины.
В теории графов расщепляемым графом называется граф, в котором вершины можно разделить на клику и независимое множество. Расщепляемые графы впервые изучали Фёлдес и Хаммер, и независимо ввели Тышкевич и Черняк.
В теории графов порождённым путём в неориентированном графе G называется путь, являющийся порождённым подграфом G. Таким образом, это последовательность вершин в G такая, что любые две смежные вершины в последовательности соединены ребром в G, и любые две несмежные вершины последовательности не соединены ребром G. Порождённый путь иногда называют змеёй и задача поиска самого длинного порождённого пути в графах гиперкубов известна как задача о змее в коробке.
В теории графов древесная ширина неориентированного графа — это число, ассоциированное с графом. Древесную ширину можно определить несколькими эквивалентными путями: как размер наибольшего множества вершин в древесном разложении, как размер наибольшей клики в хордальном дополнении графа, как максимальный порядок убежища при описании стратегии игры преследования на графе или как максимальный порядок ежевики, набора связных подграфов, которые касаются друг друга. Древесная ширина часто используется в качестве параметра в анализе параметрической сложности алгоритмов на графах. Графы с шириной дерева, не превосходящей k, называются частичными k-деревьями. Многие другие хорошо изученные семейства графов также имеют ограниченную ширину дерева.
Базис циклов неориентированного графа — множество простых циклов, которые образуют базис пространства циклов графа. Таким образом, это минимальный набор циклов, который позволяет любой эйлеров подграф представить как симметрическую разность базисных циклов.
Характеризация запрещёнными графами — это метод описания семейства графов или гиперграфов путём указания подструктур, которым запрещено появляться внутри любого графа в семействе.
В теории графов число Хадвигера неориентированного графа G — это размер наибольшего полного графа, который может быть получен стягиванием рёбер графа G. Эквивалентно, число Хадвигера h(G) — это наибольшее число k, для которого полный граф Kk является минором графа G, меньший граф, полученный из G стягиванием рёбер и удалением вершин и рёбер. Число Хадвигера известно также как число кликового стягивания графа G или степень гомоморфизма графа G. Число названо именем Гуго Хадвигера, который ввёл число в 1943 и высказал гипотезу, по которой число Хадвигера всегда не меньше хроматического числа графа G.
В теории графов дистанционно-наследуемый граф — это граф, в котором расстояния в любом связном порождённом подграфе те же самые, что и в исходном графе. Таким образом, любой порождённый подграф наследует расстояния большего графа.
Птолеме́ев граф — это неориентированный граф, в котором расстояния по кратчайшему пути удовлетворяют неравенству Птолемея. Птолемеевы графы — это в точности графы, которые одновременно являются и хордальными, и дистанционно наследуемыми. Эти графы включают блоковые графы и являются подклассом совершенных графов.
В теории графов путевая декомпозиция графа G — это, неформально, представление графа G в виде «утолщённого» пути, а путевая ширина графа G — это число, измеряющее, насколько граф G был утолщён. Более формально, путевая декомпозиция — это последовательности вершин подмножества графа G, такие, что конечные вершины каждого ребра появляются в одном из подмножеств и каждая вершина принадлежит одному из множеств, а путевая ширина на единицу меньше размера наибольшего множества в такой декомпозиции. Путевая ширина известна также как интервальная толщина, величина вершинного разделения или вершинно-поисковое число.
Теорема о совершенных графах Ловаша утверждает, что неориентированный граф является совершенным тогда и только тогда, когда его дополнение также совершенно. Это утверждение высказал в виде гипотезы Берж и утверждение называют иногда слабой теоремой о совершенных графах, чтобы не смешивать со строгой теоремой о совершенных графах, описывающей совершенные графы их запрещёнными порождёнными подграфами.
Сильная гипотеза о совершенных графах — это характеризация запрещёнными графами совершенных графов как в точности тех графов, которые не имеют ни нечётных дыр, ни нечётных антидыр. Гипотезу высказал Берж в 1961. Доказательство Марии Чудновской, Нейла Робертсона, Пола Сеймура и Робина Томаса было заявлено в 2002 и опубликовано ими в 2006.
Косое разбиение графа — разбиение его вершин на два подмножества в виде несвязного порождённого подграфа и дополнения; играет важную роль в теории совершенных графов.
Пространство циклов неориентированного графа — линейное пространство над полем , состоящее из его эйлеровых подграфов. Размерность этого пространства называется контурным рангом графа. С точки зрения алгебраической топологии циклическое пространство является первой группой гомологий графа.