Поря́дковые стати́стики в математической статистике — это упорядоченная по неубыванию выборка одинаково распределённых независимых случайных величин и её элементы, занимающие строго определенное место в ранжированной совокупности.
Эта последовательность называется вариационным рядом. Вариационный ряд и его члены являются порядковыми статистиками. Случайная величина называется -ой порядковой статистикой исходной выборки[1]. Порядковые статистики являются основой непараметрических методов.
Замечания
Очевидно из определения:
;
.
Порядковые статистики абсолютно непрерывного распределения
Пусть дана независимая выборка из абсолютно непрерывного распределения, задаваемого плотностью распределения и функцией распределения. Тогда порядковые статистики также имеют абсолютно непрерывные распределения, и их плотности распределения имеют вид[2]:
.
Случайный вектор , где также имеет абсолютно непрерывное распределение, и совместная плотность распределения имеет вид:
.
Пример
Плотности стандартного непрерывного равномерного распределения и его порядковых статистик для случая n=5.
Математи́ческое ожида́ние — понятие в теории вероятностей, означающее среднее значение случайной величины. В случае непрерывной случайной величины подразумевается взвешивание по плотности распределения. Математическое ожидание случайного вектора равно вектору, компоненты которого равны математическим ожиданиям компонентов случайного вектора.
Дифференциа́льная фо́рма порядка , или -форма, — кососимметрическое тензорное поле типа на многообразии.
Ме́тод обра́тного преобразова́ния — способ генерации случайных величин с заданной функцией распределения, путём модификации работы генератора равномерно распределённых чисел.
Га́мма-распределе́ние в теории вероятностей — это двухпараметрическое семейство абсолютно непрерывных распределений. Если параметр принимает целое значение, то такое гамма-распределение также называется распределе́нием Эрла́нга.
Распределе́ние Стью́дента в теории вероятностей — это однопараметрическое семейство абсолютно непрерывных распределений. Уильям Сили Госсет первым опубликовал работы, посвящённые этому распределению, под псевдонимом «Стьюдент».
Выборочная (эмпири́ческая) фу́нкция распределе́ния в математической статистике — это приближение теоретической функции распределения, построенное с помощью выборки из него.
Гистогра́мма в математической статистике — это функция, приближающая плотность вероятности некоторого распределения, построенная на основе выборки из него.
Теорема Гливе́нко — Канте́лли в математической статистике уточняет результат о сходимости выборочной функции распределения к её теоретическому аналогу.
Вы́борочное (эмпири́ческое) сре́днее — это приближение теоретического среднего распределения, основанное на выборке из него.
Выборочная дисперсия в математической статистике — это оценка теоретической дисперсии распределения, рассчитанная на основе данных выборки. Виды выборочных дисперсий:
смещённая;
несмещённая, или исправленная
Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия. Метод максимального правдоподобия был проанализирован, рекомендован и значительно популяризирован Р. Фишером между 1912 и 1922 годами.
Тензорный анализ — обобщение векторного анализа, раздел тензорного исчисления, изучающий дифференциальные операторы, действующие на алгебре тензорных полей дифференцируемого многообразия . Рассматриваются также операторы, действующие на более общие, чем тензорные поля, геометрические объекты: тензорные плотности, дифференциальные формы со значениями в векторном расслоении.
Метод сопряжённых градиентов — метод нахождения локального экстремума функции на основе информации о её значениях и её градиенте. В случае квадратичной функции в минимум находится не более чем за шагов.
Анато́лий Алексе́евич Карацу́ба — советский и российский математик. Создатель первого быстрого метода в истории математики — метода умножения больших чисел.
Мультииндекс — обобщение понятия целочисленного индекса до векторного индекса, которое нашло применение в различных областях математики, связанных с функциями многих переменных. Использование мультииндекса помогает упростить математические формулы.
Достаточная статистика для параметра определяющая некоторое семейство распределений вероятности — статистика такая, что условная вероятность выборки при данном значении не зависит от параметра То есть выполняется равенство:
Метод итерации или метод простой итерации — численный метод решения системы линейных алгебраических уравнений. Суть метода заключается в нахождении по приближённому значению величины следующего приближения, являющегося более точным.
Квантовое преобразование Фурье — линейное преобразование квантовых битов (кубитов), являющееся квантовым аналогом дискретного преобразования Фурье (ДПФ). КПФ входит во множество квантовых алгоритмов, в особенности в алгоритм Шора разложения числа на множители и вычисления дискретного логарифма, в квантовый алгоритм оценки фазы для нахождения собственных чисел унитарного оператора и алгоритмы для нахождения скрытой подгруппы.
Оценки Шаудера — оценки на норму Гёльдера решений линейных равномерно эллиптических уравнений в частных производных.
Тождество Похожаева — это интегральное соотношение, которому удовлетворяют стационарные локализованные решения нелинейного уравнения Шредингера или нелинейного уравнения Клейна-Гордона. Оно было получено С.И. Похожаевым и аналогично теореме о вириале. Это соотношение также известно как теорема Д.Г. Деррика. Аналогичные тождества могут быть получены и для других уравнений математической физики.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.