Простейшим профилем потенциала указанного типа является скачок:
при и при .
Для учёта некоторого размытия перехода используется выражение
,
моделирующее монотонное возрастание от 0 на до на .
Потенциальная ступенька может формироваться, например, координатной зависимостью энергии дна зоны проводимости полупроводниковой гетероструктуры, когда из-за разности сродства к электрону двух материалов на их стыке возникает достаточно резкий скачок .
Модель скачкообразной ступеньки
Стационарное уравнение Шрёдингера для скачкообразной потенциальной ступеньки имеет вид:
для ,
и то же самое без слагаемого с для . Здесь — масса частицы, — редуцированная постоянная Планка, а — волновая функция частицы. Предполагается, что частица движется в сторону положительных . Далее все символы с цифрой 1 относятся к области , а с цифрой 2 — к .
Считая, что , волновую функцию для областей 1 () и 2 () запишем как
,
где
.
Из требования непрерывности волновой функции и её производной в точке получим
Этот результат принципиально отличается от классического: в классической механике никакого отражения в таком случае нет, а независимо от .
Модель размытой ступеньки
Стационарное уравнение Шрёдингера для размытой потенциальной ступеньки (степень размытия задаётся параметром : чем он меньше, тем ближе потенциал к скачкообразному) записывается:
Если обозначить и , то оно примет вид
Если сделать замену переменной
то, с учётом обозначения , приведётся к виду:
Так как точки и являются особыми точкам данного уравнения, то естественно искать решение в виде:
Если выбрать и , то уравнение приведётся к гипергеометрическому уравнению Гаусса:
Выбирая решения с правильной асимптотикой, получим
Тогда можно получить коэффициенты отражения и прохождения. В случае :
Таким образом, наблюдается полное отражение. В случае с учётом обозначения :
В пределе
,
что совпадает с результатом предыдущего раздела, если вернуться к изначальным переменным.
Литература
З. Флюгге. Задачи по квантовой механике. — Издательство ЛКИ, 2008. — Т. 1.
Уравнение Дира́ка — релятивистски инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено Полем Дираком в 1928 году.
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Теоре́ма Нётер или первая теорема Нётер утверждает, что каждой дифференцируемой симметрии действия для физической системы с консервативными силами соответствует закон сохранения. Теорема была доказана математиком Эмми Нётер в 1915 году и опубликована в 1918 году. Действие для физической системы представляет собой интеграл по времени функции Лагранжа, из которого можно определить поведение системы согласно принципу наименьшего действия. Эта теорема применима только к непрерывным и гладким симметриям над физическим пространством.
Эффект Шубникова — де Хааза назван в честь советского физика Л. В. Шубникова и нидерландского физика В. де Хааза, открывших его в 1930 году. Наблюдаемый эффект заключался в осцилляциях магнетосопротивления плёнок висмута при низких температурах. Позже эффект Шубникова — де Гааза наблюдали в многих других металлах и полупроводниках. Эффект Шубникова — де Гааза используется для определения тензора эффективной массы и формы поверхности Ферми в металлах и полупроводниках.
Лагранжиа́н, фу́нкция Лагра́нжа динамической системы, является функцией обобщённых координат и описывает развитие системы. Например, уравнения движения в этом подходе получаются из принципа наименьшего действия, записываемого как
Солито́н — структурно устойчивая уединённая волна, распространяющаяся в нелинейной среде.
Теория Гинзбурга — Ландау — созданная в начале 1950-х годов В. Л. Гинзбургом и Л. Д. Ландау феноменологическая теория сверхпроводимости.
Те́нзор эне́ргии-и́мпульса (ТЭИ) — симметричный тензор второго ранга (валентности), описывающий плотность и поток энергии и импульса полей материи и определяющий взаимодействие этих полей с гравитационным полем.
Многочлен Лежа́ндра — многочлен, который в наименьшей степени отклоняется от нуля в смысле среднего квадратического. Образует ортогональную систему многочленов на отрезке в пространстве . Многочлены Лежандра могут быть получены из многочленов ортогонализацией Грама ― Шмидта.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Квазичастицы в графене обладают линейным законом дисперсии вблизи дираковских точек и их свойства полностью описываются уравнением Дирака. Сами дираковские точки находятся на краях зоны Бриллюэна, где электроны обладают большим волновым вектором. Если пренебречь процессами переброса между долинами, то этот большой вектор никак не влияет на транспорт в низкоэнергетическом приближении, поэтому волновой вектор, фигурирующий в уравнении Дирака, отсчитывают от дираковских точек и уравнение Дирака записывают для разных долин отдельно.
Уравнения Прока — обобщение уравнений Максвелла, призванное описывать массивные частицы со спином 1. Уравнения Прока обычно записываются в виде
,
Спонта́нное наруше́ние симме́три́и — способ нарушения симметрии физической системы, при котором исходное состояние и уравнения движения системы инвариантны относительно некоторых преобразований симметрии, но в процессе эволюции система переходит в состояние, для которого инвариантность относительно некоторых преобразований начальной симметрии нарушается. Спонтанное нарушение симметрии всегда связано с вырождением состояния с минимальной энергией, называемого вакуумом. Множество всех вакуумов имеет начальную симметрию, однако каждый вакуум в отдельности — нет. Например, шарик в жёлобе с двумя ямами скатывается из неустойчивого симметричного состояния в устойчивое состояние с минимальной энергией либо влево, либо вправо, разрушая при этом симметрию относительно изменения левого на правое.
Пропагатор в квантовой механике и квантовой теории поля (КТП) — функция, характеризующая распространение релятивистского поля от одного акта взаимодействия до другого. Эта функция определяет амплитуду вероятности перемещения частицы из одного места пространства в другое за заданный промежуток времени или перемещения частицы с определённой энергией и импульсом. Для расчёта частоты столкновений в КТП используются виртуальные частицы, представленные в диаграммах Фейнмана пропагаторами, вносят свой вклад в вероятность рассеяния, описываемого соответствующей диаграммой. Их также можно рассматривать как оператор, обратный волновому оператору, соответствующему частице, и поэтому их часто называют (причинными) функциями Грина.
Модифицированный потенциал Пёшль — Теллера — функция потенциальной энергии элетростатического поля, предложенная физиками Гертой Пёшль и Эдвардом Теллером как приближение для энергии двухатомной молекулы, альтернативный потенциалу Морзе
Физические свойства графена проистекают из электронных свойств атомов углерода и поэтому часто имеют нечто общее с остальными аллотропными модификациями углерода, которые были известны до него, такими как графит, алмаз, углеродные нанотрубки. Конечно, схожести больше с графитом, так как он состоит из графеновых слоёв, но без новых уникальных физических явлений и исследований других материалов и наработок физических методов анализа и теоретических подходов графен не привлёк бы специалистов из таких разных дисциплин как физика, химия, биология и физика элементарных частиц.
Опера́тор и́мпульса — квантово-механический оператор, использующийся для описания импульса. Является аналогом классического канонического импульса, который в наиболее распространённом случае отсутствия внешнего магнитного поля тождественен кинематическому импульсу . Выражается как , то есть предполагает взятие градиента подставляемой справа волновой функции , с последующим домножением на , где — мнимая единица, — редуцированная постоянная Планка. Обозначается . Как и классический аналог, в системе СИ имеет размерность кгм/с.
Потенциал Пёшль — Теллера — функция потенциальной энергии электростатического поля, предложенная венгерскими физиками Гертой Пёшль и Эдвардом Теллером как приближение для энергии двухатомной молекулы, альтернативный потенциалу Морзе. Потенциал имеет вид
Конические координаты — трёхмерная ортогональная система координат, состоящая из концентрических сфер и двумя семействами перпендикулярных конусов, направленных вдоль осей z и x.
Симметрии в квантовой механике — преобразования пространства-времени и частиц, которые оставляют неизменными уравнения квантовой механики. Рассматриваются во многих разделах квантовой механики, которые включают релятивистскую квантовую механику, квантовую теорию поля, стандартную модель и физику конденсированного состояния. В целом, симметрия в физике, законы инвариантности и сохранения являются основополагающими ограничениями для формулирования физических теорий и моделей. На практике это мощные методы решения задач и прогнозирования того, что может случиться. Хотя законы сохранения не всегда дают конечное решение проблемы, но они формируют правильные ограничения и наметки к решению множества задач.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.