А́лгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики; в этом разделе числа и другие математические объекты обозначаются буквами и другими символами, что позволяет записывать и исследовать их свойства в самом общем виде. Слово «алгебра» также употребляется в общей алгебре в названиях различных алгебраических систем. В более широком смысле под «алгеброй» понимают раздел математики, посвящённый изучению операций над элементами множеств произвольной природы, обобщающий обычные операции сложения и умножения чисел.
Натура́льные чи́сла — числа, возникающие естественным образом при счёте. Последовательность всех натуральных чисел, расположенных в порядке возрастания, называется натуральным рядом.
Це́лые чи́сла — расширение множества натуральных чисел, получаемое добавлением к нему нуля и отрицательных чисел. Необходимость рассмотрения целых чисел продиктована невозможностью в общем случае вычесть из одного натурального числа другое — можно вычитать только меньшее число из большего. Введение нуля и отрицательных чисел делает вычитание такой же полноценной операцией, как сложение.
Бина́рная, или двуме́стная, опера́ция — математическая операция, принимающая два аргумента и возвращающая один результат.
Кольцо́ в общей алгебре — алгебраическая структура, в которой определены операция обратимого сложения и операция умножения, по свойствам похожие на соответствующие операции над числами. Простейшими примерами колец являются совокупности чисел, совокупности числовых функций, определённых на заданном множестве. Во всех случаях имеется множество, похожее на совокупности чисел в том смысле, что его элементы можно складывать и умножать, причём эти операции ведут себя естественным образом.
Граф — математическая абстракция реальной системы любой природы, объекты которой обладают парными связями. Граф как математический объект есть совокупность двух множеств — множества самих объектов, называемого множеством вершин, и множества их парных связей, называемого множеством рёбер. Элемент множества рёбер есть пара элементов множества вершин.
Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, который представляет собой совокупность строк и столбцов, на пересечении которых находятся его элементы. Количество строк и столбцов задаёт размер матрицы. Матрицу можно также представить в виде функции двух дискретных аргументов. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Ноль — целое число, которое при сложении с любым числом или вычитании из него не меняет последнее, то есть даёт результат, равный этому последнему; умножение любого числа на ноль даёт ноль.
Умноже́ние — одна из основных математических операций над двумя аргументами, которые называются множителями или сомножителями. Результат умножения называется их произведением.
Правило умножения (правило «и») — одно из основных правил комбинаторных принципов. Согласно ему, если элемент A можно выбрать n способами, и при любом выборе A элемент B можно выбрать m способами, то пару (A, B) можно выбрать n·m способами. Естественным образом обобщается на произвольное количество независимо выбираемых элементов. Данное правило обычно принимается за аксиому, как и правило суммы.
Оператор — линейное отображение в одной из областей физики — квантовой механике, которое действует на волновую функцию, являющуюся комплекснозначной функцией, дающей наиболее полное описание состояния системы. Операторы обозначаются большими латинскими буквами с циркумфлексом наверху:
Код с малой плотностью проверок на чётность — используемый в передаче информации код, частный случай блочного линейного кода с проверкой чётности. Особенностью является малая плотность значимых элементов проверочной матрицы, за счёт чего достигается относительная простота реализации средств кодирования.
Умноже́ние ма́триц — одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведе́нием ма́триц. Элементы новой матрицы получаются из элементов старых матриц в соответствии с правилами, проиллюстрированными ниже.
Сюрреальные числа — обобщение обычных вещественных чисел и бесконечных порядковых чисел. Впервые были использованы в работах английского математика Джона Конвея для описания ряда аспектов теории игр.
При доказательстве комбинаторных теорем обычно признаются и используются несколько полезных комбинаторных правил, или комбинаторных принципов. Примеры:
- Правило сложения, правило умножения и принцип включения-исключения часто используются для целей перечисления.
- Принцип Дирихле часто устанавливает существование чего-либо или используется для определения минимального либо максимального количества чего-либо в дискретном контексте.
- Биективное доказательство используется, чтобы убедиться, что два множества имеют одинаковое количество элементов.
- Многие комбинаторные тождества возникают из метода двойного счёта или метода выделенного элемента.
- Производящие функции и рекуррентные соотношения — мощные инструменты, которые можно использовать для управления последовательностями, и они могут быть полезны при исследовании многих комбинаторных ситуаций.
Алгоритм Тоома — Кука, иногда упоминаемый как Tоом-3 — это алгоритм умножения больших чисел, названный именами Андрея Леоновича Тоома, предложившего новый алгоритм с низкой сложностью и Стивена Кука, более ясно его описавшего.