Правильный 5-симплекс
Гексатерон (правильный 5-симплекс) | |
---|---|
Тип | Правильный пятимерный политоп |
Символ Шлефли | {3,3,3,3} |
Диаграмма Коксетера — Дынкина | |
4-мерных ячеек | 6 |
Ячеек | 15 |
Граней | 20 |
Рёбер | 15 |
Вершин | 6 |
Вершинная фигура | 5-ячейник |
Двойственный политоп | Он же |
Правильный 5-симплекс, или правильный гексатерон, или просто гексатерон[1] — пятимерное геометрическое тело, правильный политоп, ограниченный шестью гранями-пятиячейниками. Представляет собой пятимерный вариант правильного симплекса.
Состоит из 6 4-мерных граней-пятиячейников, 15 правильнотетраэдрических ячеек, 20 граней — правильных треугольников, 15 рёбер и 6 вершин. Одна из множества проекций правильного 5-симплекса на плоскость — шестиугольник с вписанной в него гексаграммой. Двугранный угол гексатерона равен arccos(0,2), то есть примерно 78,46°.
В прямоугольной системе координат
Гексатерон может быть получен из пятиячейника путём добавления шестой вершины, равноудалённой от всех других вершин исходного пятиячейника. Гексатерон можно разместить в Декартовой системе координат следующим образом (длина ребра тела равна 2):
Примечания
- ↑ Jonathan Bowers. Uniform Polytera and Other Five Dimensional Shapes. Дата обращения: 22 октября 2016. Архивировано 18 сентября 2020 года.
Литература
- Александров П. С. Комбинаторная топология, М. — Л., 1947
Основные выпуклые правильные и однородные политопы в размерностях 2—10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Семейство | An | Bn | I₂(p) / Dn | E₆ / E₇ / E₈ / F₄ / G₂ | H₄ | |||||||
Правильный многоугольник | Правильный треугольник | Квадрат | Правильный p-угольник | Правильный шестиугольник | Правильный пятиугольник | |||||||
Однородный многогранник | Правильный тетраэдр | Правильный октаэдр • Куб | Полукуб | Правильный додекаэдр • Правильный икосаэдр | ||||||||
Однородный многоячейник | Пятиячейник | 16-ячейник • Тессеракт | Полутессеракт | 24-ячейник | 120-ячейник • 600-ячейник | |||||||
Однородный 5-политоп | Правильный 5-симплекс | 5-ортоплекс • 5-гиперкуб | 5-полугиперкуб | |||||||||
Однородный 6-политоп | Правильный 6-симплекс | 6-ортоплекс • 6-гиперкуб | 6-полугиперкуб | 122 • 221 | ||||||||
Однородный 7-политоп | Правильный 7-симплекс | 7-ортоплекс • 7-гиперкуб | 7-полугиперкуб | 132 • 231 • 321 | ||||||||
Однородный 8-политоп | Правильный 8-симплекс | 8-ортоплекс • 8-гиперкуб | 8-полугиперкуб | 142 • 241 • 421 | ||||||||
Однородный 9-политоп | Правильный 9-симплекс | 9-ортоплекс • 9-гиперкуб | 9-полугиперкуб | |||||||||
Однородный 10-политоп | Правильный 10-симплекс | 10-ортоплекс • 10-гиперкуб | 10-полугиперкуб | |||||||||
Однородный n-политоп | Правильный n-симплекс | n-ортоплекс • n-гиперкуб | n-полугиперкуб | 1k2 • 2k1 • k21 | n-пятиугольный многогранник | |||||||
Темы: Семейства политопов • Правильные политопы • Список правильных политопов и их соединений |