Сре́днее арифмети́ческое — разновидность среднего значения. Определяется как число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции.
Корреля́ция, или корреляцио́нная зави́симость — статистическая взаимосвязь двух или более случайных величин, при этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин.
Стоимость под риском — стоимостная мера риска. Это выраженная в денежных единицах оценка величины, которую не превысят ожидаемые в течение данного периода времени потери с заданной вероятностью.
Среднеквадрати́ческое отклонение — наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания. Обычно означает квадратный корень из дисперсии случайной величины, но иногда может означать тот или иной вариант оценки этого значения.
Погре́шность измере́ния — отклонение измеренного значения величины от её истинного (действительного) значения. Погрешность измерения является характеристикой точности измерения.
Ковариа́ция или корреляционный момент случайных величин — в теории вероятностей и математической статистике мера зависимости двух случайных величин.
Распределе́ние Стью́дента в теории вероятностей — это однопараметрическое семейство абсолютно непрерывных распределений. Уильям Сили Госсет первым опубликовал работы, посвящённые этому распределению, под псевдонимом «Стьюдент».
Закон больших чисел (ЗБЧ) в теории вероятностей — принцип, описывающий результат выполнения одного и того же эксперимента много раз. Согласно закону, среднее значение конечной выборки из фиксированного распределения близко к математическому ожиданию этого распределения.
Вы́борочное (эмпири́ческое) сре́днее — это приближение теоретического среднего распределения, основанное на выборке из него.
Выборочная дисперсия в математической статистике — это оценка теоретической дисперсии распределения, рассчитанная на основе данных выборки. Виды выборочных дисперсий:
- смещённая;
- несмещённая, или исправленная
Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия. Метод максимального правдоподобия был проанализирован, рекомендован и значительно популяризирован Р. Фишером между 1912 и 1922 годами.
Довери́тельный интерва́л — термин, используемый в математической статистике при интервальной оценке статистических параметров, более предпочтительной при небольшом объёме выборки, чем точечная. Доверительным называют интервал, который покрывает неизвестный параметр с заданной надёжностью.
Доверительный интервал для математического ожидания — интервал, который с известной вероятностью содержит математическое ожидание генеральной совокупности.
Теоре́ма Фи́шера для норма́льных вы́борок в математической статистике — это утверждение, характеризующее распределение выборочной дисперсии.
F-тест или критерий Фишера — статистический критерий, тестовая статистика которого при выполнении нулевой гипотезы имеет распределение Фишера (F-распределение).
Z-тест — класс методов статистической проверки гипотез, основанных на нормальном распределении. Обычно применяется для проверки равенства средних значений при известной дисперсии генеральной совокупности или при оценке выборочного среднего стандартизованных значений. Z-статистика вычисляется как отношение разницы между случайной величиной и математическим ожиданием к стандартной ошибке этой случайной величины: