Лине́йная а́лгебра — раздел алгебры, изучающий математические объекты линейной природы: векторные пространства, линейные отображения, системы линейных уравнений. Среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают из изучения линейных пространств, но как таковые относятся к полилинейной алгебре.
Евкли́дово простра́нство в изначальном смысле — это пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность, равную 3, то есть является трёхмерным.
Преобразова́ния Ло́ренца — линейные преобразования векторного псевдоевклидова пространства, сохраняющие длины или, что эквивалентно, скалярное произведение векторов.
Норма — функционал, заданный на векторном пространстве и обобщающий понятие длины вектора или абсолютного значения числа.
Преобразова́ния Галиле́я — в классической механике и нерелятивистской квантовой механике: преобразования координат и скорости при переходе от одной инерциальной системы отсчёта (ИСО) к другой. Термин был предложен Филиппом Франком в 1909 году. Преобразования Галилея опираются на принцип относительности Галилея, который подразумевает одинаковость времени во всех системах отсчёта.
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная матрица, поэтому собственные векторы и собственные значения часто определяются в контексте использования таких матриц.
Определителем Грама (грамианом) системы векторов в евклидовом пространстве называется определитель матрицы Грама этой системы:
Вторая квадратичная форма поверхности ― квадратичная форма на касательном расслоении поверхности, которая, в отличие от первой квадратичной формы, определяет внешнюю геометрию поверхности в окрестности данной точки.
Бра и кет — алгебраический формализм, предназначенный для описания квантовых состояний. Называется также обозначениями Дирака. В матричной механике данная система обозначений является общепринятой. Данная система обозначений представляет собой не более чем иные текстуальные обозначения для векторов, ковекторов, билинейных форм и скалярных произведений, и потому применима в линейной алгебре вообще. В тех случаях, когда данная система обозначений используется в линейной алгебре, обычно речь идет о бесконечно-мерных пространствах и/или о линейной алгебре над комплексными числами.
Умноже́ние ма́триц — одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведе́нием ма́триц. Элементы новой матрицы получаются из элементов старых матриц в соответствии с правилами, проиллюстрированными ниже.
Эрми́тово сопряжённая ма́трица — матрица с комплексными элементами, полученная из исходной матрицы транспонированием и заменой каждого элемента комплексно сопряжённым ему.
Представление Гейзенберга — один из способов описания квантовомеханических явлений, в котором эволюция системы описывается уравнением Гейзенберга и определяется только развитием операторов во времени, причём вектор состояния от времени не зависит.
Матричная квантовая механика — это формулировка квантовой механики, созданная Вернером Гейзенбергом, Максом Борном и Паскуалем Йорданом в 1925 году. Матричная квантовая механика была первой концептуально автономной и логически непротиворечивой формулировкой квантовой механики. Её описание квантовых скачков заменило модель Бора для электронных орбит. Это было сделано путём интерпретации физических свойств частиц как матриц, которые эволюционируют во времени. Матричная механика эквивалентна волновой формулировке Шрёдингера квантовой механики на основе теоремы Риса — Фишера, как это проявляется в обозначениях бра и кет Дирака.
Кривизна римановых многообразий численно характеризует отличие римановой метрики многообразия от евклидовой в данной точке.
Полуопределённое программирование — подраздел выпуклого программирования, которое занимается оптимизацией линейной целевой функции на пересечении конусов положительно полуопределённых матриц с аффинным пространством.
Ожидаемая величина измерения — вероятностное ожидаемое значение результата эксперимента по измерению в квантовой механике. Её можно рассматривать как среднее значение всех возможных результатов измерения, взвешенное по их вероятности, и, как таковое, оно не является "наиболее" вероятным значением измерения; действительно, ожидаемое значение может иметь нулевую вероятность возникновения. Является фундаментальным понятием во всех областях квантовой физики.