Преобразование кривизны
Преобразование кривизны — отображение пространства векторных полей на многообразии , линейно зависящее от пары векторных полей и на , задаваемое формулой:
где — ковариантная производная, а — скобки Ли.
Преобразование кривизны — отображение пространства векторных полей на многообразии , линейно зависящее от пары векторных полей и на , задаваемое формулой:
где — ковариантная производная, а — скобки Ли.
Градие́нт — вектор, своим направлением указывающий направление наискорейшего роста некоторой скалярной величины .
Ве́кторное по́ле — это отображение, которое каждой точке рассматриваемого пространства ставит в соответствие вектор с началом в этой точке. Например, вектор скорости ветра в данный момент времени различен в разных точках и может быть описан векторным полем.
Риманов тензор кривизны представляет собой стандартный способ выражения кривизны римановых многообразий, а в общем случае — произвольных многообразий аффинной связности, без кручения или с кручением.
Опера́тор на́бла — векторный дифференциальный оператор, компоненты которого являются частными производными по координатам. Обозначается символом ∇ (набла).
Ро́тор, рота́ция или вихрь — векторный дифференциальный оператор над векторным полем.
По́ле Ки́ллинга — векторное поле скоростей (локальной) однопараметрической группы движений риманова или псевдориманова многообразия.
Конформное отображение — непрерывное отображение, сохраняющее углы между кривыми, а значит и форму бесконечно малых фигур.
Ковариантная производная — обобщение понятия производной для тензорных полей на многообразиях. Понятие ковариантной производной тесно связано с понятием аффинной связности.
Производная — фундаментальное математическое понятие, используемое в различных вариациях (обобщениях) во многих разделах математики. Это базовая конструкция дифференциального исчисления, допускающая много вариантов обобщений, применяемых в математическом анализе, дифференциальной топологии и геометрии, алгебре.
А́лгебра Ли — объект общей алгебры, являющийся векторным пространством с определенной на ней антикоммутативной билинейной операцией, удовлетворяющей тождеству Якоби. В общем случае алгебра Ли является неассоциативной алгеброй. Названа по имени норвежского математика Софуса Ли (1842—1899).
Свя́зность Леви-Чиви́ты — одна из основных структур на римановом многообразии. Даёт естественный способ дифференцировать векторные поля на римановом многообразии; эквивалентно заданию ковариантного дифференцирования, а также параллельного перенесения вдоль кривых. Названа в честь итальянского математика Туллио Леви-Чивиты.
Ве́кторный ана́лиз — раздел математики, распространяющий методы математического анализа на векторы, как правило в двух- или трёхмерном пространстве.
Тензорный анализ — обобщение векторного анализа, раздел тензорного исчисления, изучающий дифференциальные операторы, действующие на алгебре тензорных полей дифференцируемого многообразия . Рассматриваются также операторы, действующие на более общие, чем тензорные поля, геометрические объекты: тензорные плотности, дифференциальные формы со значениями в векторном расслоении.
В векторном анализе ве́кторный потенциа́л — это векторное поле, ротор которого равен заданному векторному полю. Он аналогичен скалярному потенциалу, который определяется как скалярное поле, градиент которого равен заданному векторному полю.
В этой статье рассматривается математический базис общей теории относительности.
Вторая квадратичная форма поверхности ― квадратичная форма на касательном расслоении поверхности, которая, в отличие от первой квадратичной формы, определяет внешнюю геометрию поверхности в окрестности данной точки.
Здесь приведён список векторных дифференциальных операторов в различных системах координат.
Теорема разложения Гельмгольца — утверждение о разложении произвольного дифференцируемого векторного поля на две компоненты:
Аффи́нная свя́зность — линейная связность на касательном расслоении многообразия. Координатными выражениями аффинной связности являются символы Кристоффеля.
Ве́кторный опера́тор Лапла́са — это векторный дифференциальный оператор второго порядка, определённый над векторным полем и обозначаемый символом , аналогичный скалярному оператору Лапласа. Векторный оператор Лапласа действует на векторное поле и имеет векторное значение, тогда как скалярный лапласиан действует на скалярное поле и имеет скалярное значение. При вычислении в декартовых координатах получаемое векторное поле эквивалентно векторному полю скалярного лапласиана, действующего на отдельные компоненты исходного вектора.