Алгебраи́ческая тополо́гия — раздел топологии, изучающий топологические пространства путём сопоставления им алгебраических объектов, а также поведение этих объектов под действием различных топологических операций.
Теория гомоло́гий — раздел математики, который изучает конструкции некоторых топологических инвариантов, называемых группами гомологий и группами когомологий. Также теориями гомологий называют конкретные конструкции групп гомологий.
Гомотопи́ческие гру́ппы — инвариант топологических пространств, одно из основных понятий алгебраической топологии.
Цепна́я гомото́пия — вариация понятия «гомотопия» в алгебраической топологии и гомологической алгебре
Когомологии де Рама — теория когомологий, основанная на дифференциальных формах, и применяемая в теориях гладких и алгебраических многообразий.
Цепно́й компле́кс и двойственное понятие коцепной комплекс — основные понятия гомологической алгебры.
Фундаментальным классом, или ориентацией, называется гомологический класс ориентированного многообразия, который соответствует «целому многообразию». Интуитивно фундаментальный класс можно себе представить как сумму симплексов максимальной размерности подходящей триангуляции многообразия.
Гомологическая алгебра — ветвь алгебры, изучающая алгебраические объекты, заимствованные из алгебраической топологии.
Теорема об универсальных коэффициентах в алгебраической топологии устанавливает связь между целочисленными гомологиями топологического пространства X и его гомологиями с коэффициентами в произвольной абелевой группе A. Она утверждает, что группы целочисленных гомологий полностью определяют группы , причём гомологии могут быть как симплициальными так и сингулярными — это общий результат гомологической алгебры о цепных комплексах свободных абелевых групп.
Алгебраическое многообразие — центральный объект изучения алгебраической геометрии. Классическое определение алгебраического многообразия — множество решений системы алгебраических уравнений над действительными или комплексными числами. Современные определения обобщают его различными способами, но стараются сохранить геометрическую интуицию, соответствующую этому определению.
CW-комплекс — тип топологического пространства с дополнительной структурой, введённый Уайтхедом для удовлетворения нужд теории гомотопий. В литературе на русском языке употребляются также названия клеточное пространство, клеточное разбиение и клеточный комплекс. Класс клеточных комплексов является более широким, чем класс симплициальных комплексов, но в то же время сохраняет комбинаторную природу, которая позволяет производить эффективные вычисления.
Аксиомы Стинрода — Эйленберга — набор основных свойств теорий гомологий, выделенный Эйленбергом и Стинродом.
Последовательность Майера — Вьеториса — естественная длинная точная последовательность, связывающая гомологии пространства с гомологиями двух покрывающих его открытых множеств и их пересечения.
Лемма о змее — инструмент, используемый в математике, особенно в гомологической алгебре, для построения длинных точных последовательностей. Лемма о змее верна в любой абелевой категории и играет ключевую роль в гомологической алгебре и её приложениях, например в алгебраической топологии. Гомоморфизмы, построенные с её помощью, обычно называют связывающими гомоморфизмами.
В математике, топологическая K-теория является подразделом алгебраической топологии. В начале своего существования она применялась для изучения векторных расслоений на топологических пространствах с помощью идей, признанных в настоящее время частью (общей) K-теории, введенной Александром Гротендиком. Ранние работы по топологической K-теории принадлежат Майклу Атья и Фридриху Хирцебруху.
Абелианиза́ция — способ превратить произвольную группу в абелеву. Является полезным инструментом в теории групп, который находит применение в алгебраической топологии.