При́знак д’Аламбе́ра — признак сходимости числовых рядов, установлен Жаном д’Аламбером в 1768 г.
Радикальный признак Коши — признак сходимости числового ряда:
Интегральный признак Коши́ — Макло́рена — признак сходимости убывающего положительного числового ряда. Признак Коши — Маклорена даёт возможность свести проверку сходимости ряда к проверке сходимости несобственного интеграла соответствующей функции на , последний часто может быть найден в явном виде.
Знакочередующийся ряд — математический ряд, члены которого попеременно принимают значения противоположных знаков, то есть:
- .
Сходящийся ряд называется сходящимся абсолютно, если сходится ряд из модулей , иначе — сходящимся условно.
Признак Дирихле — теорема, указывающая достаточные условия сходимости несобственных интегралов и суммируемости бесконечных рядов. Названа в честь немецкого математика Лежёна Дирихле.
Признак Ди́ни — признак поточечной сходимости ряда Фурье. Несмотря на то, что ряд Фурье функции из сходится к ней в смысле -нормы, он вовсе не обязан сходиться к ней поточечно. Тем не менее при некоторых дополнительных условиях поточечная сходимость всё же имеет место.
Малая теорема Фубини — это теорема о почленном дифференцировании ряда монотонных функций, которая гласит:
Функциональный ряд — ряд, каждым членом которого, в отличие от числового ряда, является не число, а функция .
Рядом Дирихле называется ряд вида
Признак Ермакова — признак сходимости числовых рядов с положительными членами, установленный Василием Ермаковым. Его специфика заключается в том, что он превосходит все прочие признаки своей «чувствительностью». Эта работа опубликована в статьях: «Общая теория сходимости рядов», «Новый признак сходимости и расходимости бесконечных знакопеременных рядов».
Признак Куммера — общий признак сходимости числовых рядов с положительными членами, установленный Эрнстом Куммером.
Признак Жамэ — признак сходимости числовых рядов с положительными членами, установленный Виктором Жамэ.
Логарифмический признак сходимости — признак сходимости числовых рядов с положительными членами.
Признак Дедекинда — признак сходимости числовых рядов вида . Установлен Юлиусом Дедекиндом.
Признак сравнения — утверждение об одновременности расходимости или сходимости двух рядов, основанный на сравнении членов этих рядов.
Телескопический признак — признак сходимости числовых рядов с положительными членами, установленный Огюстеном Коши в 1821 году.
При́знаки сходи́мости числового ряда — методы, позволяющие установить сходимость или расходимость бесконечного ряда
Эта страница основана на
статье Википедии.
Текст доступен на условиях лицензии
CC BY-SA 4.0; могут применяться дополнительные условия.
Изображения, видео и звуки доступны по их собственным лицензиям.