Теорема. Если функция мероморфна в замыкании некоторой односвязной ограниченной области с гладкой границей и не имеет на её границе ни нулей, ни полюсов, то справедлива следующая формула:
где и — количества соответственно нулей и полюсов функции в , учтённых каждый с его кратностью, а — изменение аргумента при обходе вдоль контура области (ориентация контура стандартная).
Доказательство
Пусть , причём функция голоморфна в точке и не равна в ней нулю (точка из области ). Тогда
.
Так как 1-форма голоморфна в точке , её вычет в этой точке равен нулю, и вычет формы в точке равен , то есть он равен порядку нуля (или минус порядку полюса) функции в этой точке.
Используя эти соображения и основную теорему о вычетах, интеграл в формулировке теоремы можно вычислить явно:
.
Таким образом, первая половина формулы доказана.
Чтобы доказать вторую половину формулы, проведём простой разрез внутри области , проходящий через все нули и полюса функции , и выходящий на границу области в некоторой точке . Область с разрезом \ теперь односвязна, и замкнутая 1-форма не имеет особенностей внутри неё и на контуре , и значит точна в , то есть допускает там первообразную. Функция будет первообразной для формы также и вдоль контура области с выколотой точкой . Поэтому можно применить формулу Ньютона-Лейбница:
.
Так как , то функция с точностью до константы совпадает с некоторой однозначной ветвью логарифма функции , и поэтому справедливо равенство:
.
Подставляя это выражение в формулу Ньютона-Лейбница, окончательно получаем:
.
См. также
Теорема Абеля — Плана
Аргумент
Примечания
↑ Шабат Б. В. Введение в комплексный анализ. — М.: Наука, 1976.
Похожие исследовательские статьи
Произво́дная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную, называют дифференцируемой.
Гамма-функция — математическая функция. Была введена Леонардом Эйлером, а своим обозначением гамма-функция обязана Лежандру.
Преобразование Фурье́ — операция, сопоставляющая одной функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие — гармонические колебания с разными частотами.
Градие́нт — вектор, своим направлением указывающий направление наискорейшего роста некоторой скалярной величины .
Ро́тор, рота́ция или вихрь — векторный дифференциальный оператор над векторным полем.
Вариацио́нное исчисле́ние — раздел анализа, в котором изучаются вариации функционалов. Наиболее типичная задача — найти функцию, на которой заданный функционал достигает экстремального значения.
Ко́мпле́ксный ана́лиз, тео́рия фу́нкций ко́мпле́ксного переме́нного — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Ряд Те́йлора — разложение функции в бесконечную сумму степенных функций. Частный случай разложения в ряд Тейлора в нулевой точке называется рядом Маклорена.
Опера́тор Лапла́са — дифференциальный оператор, действующий в линейном пространстве гладких функций и обозначаемый символом . Функции он ставит в соответствие функцию
Вы́чет в комплексном анализе — объект, характеризующий локальные свойства заданной функции или формы.
Элемента́рные фу́нкции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций:
степенная функция с любым действительным показателем;
показательная и логарифмическая функции;
тригонометрические и обратные тригонометрические функции.
Теорема Грина устанавливает связь между криволинейным интегралом по замкнутому контуру и двойным интегралом по односвязной области , ограниченной этим контуром. Фактически, эта теорема является частным случаем более общей теоремы Стокса. Теорема названа в честь английского математика Джорджа Грина.
Интегральная показательная функция — специальная функция, обозначаемая символом .
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Интегральная формула Коши — соотношение для голоморфных функций комплексного переменного, связывающее значение функции в точке с её значениями на контуре, окружающем точку.
Основна́я теоре́ма о вы́четах — мощный инструмент для вычисления интеграла мероморфной функции по замкнутому контуру. Её часто используют также для вычисления вещественных интегралов. Она является обобщением интегральной теоремы Коши и интегральной формулы Коши.
Фу́нкция Э́йри — частное решение дифференциального уравнения
Комплексный логарифм — аналитическая функция, получаемая распространением вещественного логарифма на всю комплексную плоскость. Существует несколько эквивалентных способов такого распространения. Данная функция имеет широкое применение в комплексном анализе. В отличие от вещественного случая, функция комплексного логарифма многозначна.
Распределе́ние (канони́ческое) Ги́ббса — распределение состояний макроскопической термодинамической системы частиц, находящейся в тепловом равновесии с термостатом.
Принцип максимума энтропии утверждает, что наиболее характерными распределениями вероятностей состояний неопределенной среды являются такие распределения, которые максимизируют выбранную меру неопределенности при заданной информации о «поведении» среды. Впервые подобный подход использовал Д.Гиббс для нахождения экстремальных функций распределений физических ансамблей частиц. Впоследствии Э.Джейнсом был предложен формализм восстановления неизвестных законов распределения случайных величин при наличии ограничений из условий максимума энтропии Шеннона.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.