Данная статья описывает производные вещественных функций. О производной комплексных функций см. Комплексный анализ.
Произво́дная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю (при условии, что такой предел существует). Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).
Процесс вычисления производной называется дифференци́рованием. Обратный процесс — нахождение первообразной — интегрирование.
В классическом дифференциальном исчислении производная чаще всего определяется через понятие предела, однако исторически теория пределов появилась позже дифференциального исчисления. Исторически производная вводилась кинематически (как скорость) или геометрически (определяясь по сути наклоном касательной, в разных конкретных формулировках). Ньютон называл производную флюксией, обозначая точкой над символом функции, школа Лейбница предпочитала в качестве базового понятия дифференциал[1].
Русский термин в форме «производная функция» впервые употребил В. И. Висковатов, переведя на русский язык соответствующий французский термин dérivée, используемый французским математиком Лагранжем[2].
Определение
Пусть в некоторой окрестноститочки определена функция Производной функции называется такое число , что функцию в окрестности можно представить в виде
Производная функции в точке , будучи пределом, может не существовать или существовать и быть конечной или бесконечной. Функция является дифференцируемой в точке тогда и только тогда, когда её производная в этой точке существует и конечна:
Для дифференцируемой в функции в окрестности справедливо представление
при
Замечания
Назовём приращением аргумента функции, а или приращением значения функции в точке Тогда
Пусть функция имеет конечную производную в каждой точке Тогда определена произво́дная фу́нкция
Функция, имеющая производную в точке, непрерывна в ней. Обратное не всегда верно.
Если производная функция сама является непрерывной, то функцию называют непреры́вно дифференци́руемой и пишут:
Если функция имеет конечную производную в точке то в окрестности её можно приблизить линейной функцией
Функция называется касательной к в точке Число является угловым коэффициентом (угловым коэффициентом касательной) или тангенсом угла наклона касательной прямой.
Тангенс можно рассматривать как масштабирующий коэффициент или коэффициент сравнения: насколько изменение ординаты больше изменения абсциссы. Если тангенс равен 1, то зависимое переменное изменяется настолько же, насколько изменяется независимое. Если тангенс равен нулю, значит изменение независимой переменной не приводит к изменению зависимой переменной.
Изначально (в геометрических задачах) тангенс является безразмерной величиной (длина противолежащего катета ∕ длина прилежащего катета, м∕м), но применительно к вычислению производной тангенс может иметь размерность, например, скорость тела есть путь∕время, т. е. м∕с.
Скорость изменения функции
Пусть — закон прямолинейного движения. Тогда выражает мгновенную скорость движения в момент времени . Новая функция также имеет производную. Эта т. н. вторая производная, обозначается как , а функция выражает мгновенное ускорение в момент времени
Вообще производная функции в точке выражает скорость изменения функции в точке , то есть скорость протекания процесса, описанного зависимостью
В приложениях
При протекании процессов (физических, механических, химических, экономических и т. п.) процесс зависит не только от параметров, но и от скорости изменения этих параметров (вплоть до качественного изменения). Например, при медленном вращении ротора генератора напряжение на выходе будет небольшое и не позволит использовать его во многих технологических операциях. При быстром вращении того же ротора напряжение увеличивается; помимо расширения сферы использования оно, например, начинает представлять опасность для персонала. При еще большей скорости вращения ротора напряжение увеличивается настолько, что может повредить изоляцию проводов, вызвать коронный разряд, вывести из строя подключенное оборудование и т. п. В этом состоит важность информации о скорости изменения параметров.
Определять производную функции как скорость изменения функции в данной точке не всегда корректно, так как скорость - это изменение какой-то величины в зависимости от времени. Есть задачи, в которых некоторая величина изменяется не в течение времени, а в зависимости от другой величины. В криволинейной трапеции высота изменяется в зависимости от длины основания. Количество прореагировавшего вещества в химическом процессе зависит от концентрации реагентов и т.п. В этих случаях имеет смысл говорить о производной не как о скорости, а как о графике изменений (прироста или убыли) величины в зависимости от другой величины.
При описании процессов и в теории управления производную рассматривают как реакцию процесса (функции) на управляющий этим процессом параметр (независимое переменное). Насколько интенсивно реагирует процесс на управляющий сигнал (насколько он чувствителен к нему). Какое изменение процесса вызывает небольшое изменение управляющего воздействия.
В геометрических задачах производная рассматривается как изменение высоты криволинейной трапеции на малом участке ее основания (криволинейную трапецию можно рассматривать как прямоугольник с переменной высотой); изменение радиуса фигуры вращения на малом участке ее оси вращения (фигура вращения рассматривается как цилиндр с переменным радиусом) и т. п.
Производную можно использовать как предиктор (устройство или метод, предсказывающий будущее процесса). Например, если спрос на продукцию растет, то прирост спроса положительный, в будущем потребность в продукции будет только расти и имеет смысл расширять производство. Если спрос на продукцию падает, то прирост спроса отрицательный и в будущем продукция станет не востребована. Имеет смысл закрывать или перепрофилировать производство.
В ПИД-регуляторах в качестве предиктора используется дифференциальная составляющая: если скорость приближения ошибки к опорному сигналу невелика, имеет смысл увеличить управляющее воздействие, чтобы ускорить процесс управления. Если скорость приближения ошибки велика, система управления уменьшает управляющее воздействие, чтобы не проскочить опорный сигнал по инерции.
Производные высших порядков
Понятие производной произвольного порядка задаётся рекуррентно. Полагаем
Если функция дифференцируема в , то производная первого порядка определяется соотношением
Пусть теперь производная -го порядка определена в некоторой окрестности точки и дифференцируема. Тогда
Если функция имеет в некоторой области D частную производную по одной из переменных, то названная производная, сама являясь функцией от может иметь в некоторой точке частные производные по той же или по любой другой переменной. Для исходной функции эти производные будут частными производными второго порядка (или вторыми частными производными).
или
или
Частная производная второго или более высокого порядка, взятая по различным переменным, называется смешанной частной производной. Например,
Класс функций, у которых производная -порядка является непрерывной, обозначается как .
Способы записи производных
В зависимости от целей, области применения и используемого математического аппарата используют различные способы записи производных. Так, производная n-го порядка может быть записана в нотациях:
Такая запись удобна своей краткостью и широко распространена; однако штрихами разрешается обозначать не выше третьей производной.
Лейбница, удобная наглядной записью отношения бесконечно малых (только в случае, если — независимая переменная; в противном случае обозначение верно лишь для производной первого порядка):
Ньютона, которая часто используется в механике для производной по времени функции координаты (для пространственной производной чаще используют запись Лагранжа). Порядок производной обозначается числом точек над функцией, например:
— производная первого порядка по при , или — вторая производная по в точке и т. д.
Эйлера, использующая дифференциальный оператор (строго говоря, дифференциальное выражение, пока не введено соответствующее функциональное пространство), и потому удобная в вопросах, связанных с функциональным анализом:
, или иногда .
В вариационном исчислении и математической физике часто применяется обозначение , ; для значения производной в точке — . Для частных производных обозначение то же, поэтому смысл обозначения определяют из контекста.
Конечно, при этом необходимо не забывать, что служат все они для обозначения одних и тех же объектов:
Примеры
Пусть . Тогда
Пусть . Тогда если то
где обозначает функцию знака. А если то а следовательно не существует.
Теоремы, связанные с дифференцированием
Для непрерывных функций на отрезке , дифференцируемых на интервале справедливы:
Лемма Ферма. Если принимает максимальное или минимальное значение в точке и существует , то .
Теорема о нуле производной. Если принимает на концах отрезка одинаковые значения, то на интервале найдётся хотя бы одна точка, в которой производная функции равна нулю.
Правило Лопиталя. Если или , причём для всякого из некоторой проколотой окрестности и существует , то .
Правила дифференцирования
Операция нахождения производной называется дифференцированием. При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций», то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу. Если — постоянное число и — некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:
Найти производную арксинуса можно при помощи взаимно обратных функций. После чего мы должны взять производную этих обеих функций. Теперь мы должны выразить производную арксинуса. Исходя из тригонометрического тождества() — получаем. Для того чтобы определить знак корня в знаменателе нужно взглянуть на область значений арксинуса. Так как косинус находится в 1-й и 4-й четвертях, то косинус положительный. Отсюда
Доказательство
Найти производную арккосинуса можно при помощи данного тождества: Теперь находим производную обеих частей этого тождества. Теперь выражаем производную арккосинуса. Получается.
Доказательство
Найти производную арктангенса можно при помощи взаимнообратной функии: Теперь находим производную обеих частей этого тождества. Теперь мы должны выразить производную арктангенса: Теперь на помощь нам придет на помощь тождество(): Получается.
Доказательство
Найти производную арккотангенса можно при помощи данного тождества: Теперь находим производную обеих частей этого тождества. Теперь выражаем производную арккотангенса. Получается.
Доказательство
Найти производную арксеканса можно при помощи тождества:
Теперь находим производную обеих частей этого тождества.
Получается.
Доказательство
Найти производную арккосеканса можно при помощи данного тождества: Теперь находим производную обеих частей этого тождества. Теперь выражаем производную арккосинуса. Получается.
↑Комков Г. Д., Левшин Б. В., Семенов Л. К. Академия наук СССР. Краткий исторический очерк (в двух томах). — 2-е изд. — М.: Наука, 1977. — Т. 1. 1724—1917. — С. 173.
Дифференциальное исчисление — раздел математического анализа, в котором изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Формирование дифференциального исчисления связано с именами Исаака Ньютона и Готфрида Лейбница. Именно они чётко сформировали основные положения и указали на взаимно-обратный характер дифференцирования и интегрирования. Создание дифференциального исчисления открыло новую эпоху в развитии математики, положив начало теории рядов, теории дифференциальных уравнений и многому другому. Методы математического анализа нашли применение во всех разделах математики и расширили применение математики в естественных науках и технике.
Формула конечных приращений, или теорема Лагра́нжа о среднем значении, утверждает, что если функция непрерывна на отрезке и дифференцируема в интервале , то найдётся такая точка , что
.
Интегра́л Ри́мана — наиболее широко используемый вид определённого интеграла. Очень часто под термином «определённый интеграл» понимается именно интеграл Римана, и он изучается самым первым из всех определённых интегралов во всех курсах математического анализа. Введён Бернхардом Риманом в 1854 году, и является одной из первых формализаций понятия интеграла.
Теоре́ма Нётер или первая теорема Нётер утверждает, что каждой дифференцируемой симметрии действия для физической системы с консервативными силами соответствует закон сохранения. Теорема была доказана математиком Эмми Нётер в 1915 году и опубликована в 1918 году. Действие для физической системы представляет собой интеграл по времени функции Лагранжа, из которого можно определить поведение системы согласно принципу наименьшего действия. Эта теорема применима только к непрерывным и гладким симметриям над физическим пространством.
Де́льта-фу́нкция — обобщённая функция, которая позволяет записать точечное воздействие, а также пространственную плотность физических величин, сосредоточенных или приложенных в одной точке.
Производная — фундаментальное математическое понятие, используемое в различных вариациях (обобщениях) во многих разделах математики. Это базовая конструкция дифференциального исчисления, допускающая много вариантов обобщений, применяемых в математическом анализе, дифференциальной топологии и геометрии, алгебре.
Дифференциа́льная геоме́трия кривы́х — раздел дифференциальной геометрии, который занимается исследованием гладких пространственных и плоских кривых в евклидовом пространстве аналитическими методами.
Условия Коши — Римана, называемые также условиями Даламбера — Эйлера, — соотношения, связывающие вещественную и мнимую части всякой дифференцируемой функции комплексного переменного .
Голоморфная функция, иногда называемая регулярной функцией — функция комплексного переменного, определённая на открытом подмножестве комплексной плоскости и комплексно дифференцируемая в каждой точке.
Лагранжева механика — формулировка классической механики, введённая Луи Лагранжем в 1788 году. В лагранжевой механике траектория объекта получается при помощи отыскания пути, который минимизирует действие — интеграл от функции Лагранжа по времени. Функция Лагранжа для классической механики вводится в виде разности между кинетической энергией и потенциальной энергией.
В математике и теоретической физике функциональная производная является обобщением производной по направлению. Разница заключается в том, что для последней дифференцирование производится в направлении какого-нибудь вектора, а для первой речь идёт о функции. Оба эти понятия можно рассматривать как обобщение обычного дифференциального исчисления.
Пове́рхность в геометрии и топологии — двумерное топологическое многообразие. Наиболее известными примерами поверхностей являются границы геометрических тел в обычном трёхмерном евклидовом пространстве. С другой стороны, существуют поверхности, которые нельзя вложить в трёхмерное евклидово пространство без привлечения сингулярности или самопересечения.
Пространство состояний — в теории управления один из основных методов описания поведения динамической системы. Движение системы в пространстве состояний отражает изменение её состояний.
Вириал для множества точечных частиц в механике определяется как:
Формула Ньютона — Лейбница, или основная формула анализа, или формула Барроу даёт соотношение между двумя операциями: взятием интеграла Римана и вычислением первообразной.
Преобразование Лежандра для заданной функции — это построение функции , двойственной ей по Юнгу. Если исходная функция была определена на векторном пространстве , её преобразованием Лежандра будет функция, определённая на сопряжённом пространстве , то есть на пространстве линейных функционалов на пространстве .
Уравнение Колмогорова — Чепмена для однопараметрического семейства непрерывных линейных операторов в топологическом векторном пространстве выражает полугрупповое свойство:
Вектор-функция — функция, значениями которой являются векторы в векторном пространстве двух, трёх или более измерений. Аргументами функции могут быть:
одна скалярная переменная — тогда значения вектор-функции определяют в некоторую кривую;
m скалярных переменных — тогда значения вектор-функции образуют в , вообще говоря, m-мерную поверхность;
векторная переменная — в этом случае вектор-функцию обычно рассматривают как векторное поле на .
Обобщённые координаты — переменные состояния системы, описывающие конфигурацию динамической системы относительно некоторой эталонной конфигурации в аналитической механике, а конкретно исследовании динамики твёрдых тел в системе многих тел. Эти переменные должны однозначно определять конфигурацию системы относительно эталонной конфигурации. Обобщённые скорости — производные по времени обобщённых координат системы.
Нотация Лейбница — система математических обозначений, разработанная Лейбницем для анализа бесконечно малых и широко используемая в математическом анализе. Основные символы — и для представления бесконечно малого приращения и функции от переменной соответственно, а также и для конечных приращений и соответственно.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.