Золото́е сече́ние — отношение частей и целого, при котором отношения частей между собой и наибольшей части к целому равны. Такие отношения наблюдаются в природе, открыты в науке и соблюдаются в искусстве. На «золотых отрезках» основываются различные системы и способы пропорционирования в архитектуре. Соотношение двух величин и , при котором бо́льшая величина относится к меньшей так же, как сумма этих величин к бо́льшей, то есть , является универсальным. Отсюда название, которое впервые появилось в эпоху Возрождения, в частности в трактате францисканского монаха, математика Луки Пачоли Божественная пропорция, но закономерность подобных отношений была известна гораздо раньше: в Древней Месопотамии, Египте и античной Греции.
Трапе́ция — выпуклый четырёхугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Часто в определении трапеции опускают последнее условие. Параллельные противоположные стороны называются основаниями трапеции, а две другие — боковыми сторонами. Средняя линия — отрезок, соединяющий середины боковых сторон.
Четырёхугольник — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), последовательно соединяющих эти точки. Различают выпуклые и невыпуклые четырёхугольники, невыпуклый четырёхугольник может быть самопересекающимся. Четырёхугольник без самопересечений называется простым, часто под термином «четырёхугольник» имеются в виду только простые четырёхугольники.
У́гол — геометрическая фигура, образованная двумя лучами, выходящими из одной точки.
Здесь собраны определения терминов из планиметрии. Курсивом выделены ссылки на термины в этом словаре.
В математике барице́нтр, или геометри́ческий центр, двумерной фигуры — это среднее арифметическое положений всех точек данной фигуры. Определение распространяется на любой объект в n-мерном пространстве. Радиус-вектор барицентра в трёхмерном случае вычисляется как
- ,
Зако́ны Ке́плера — три эмпирических соотношения, установленные Иоганном Кеплером на основе длительных астрономических наблюдений Тихо Браге. Изложены Кеплером в работах, опубликованных между 1609 и 1619 годами. Описывают идеализированную гелиоцентрическую орбиту планеты.
Ориента́ция — обобщение и формализация понятий направления обхода и направления на прямой на более сложные геометрические объекты, многообразия, векторные расслоения и так далее.
Интегра́л — одно из важнейших понятий математического анализа, которое возникает при решении задач:
- о нахождении площади под кривой;
- пройденного пути при неравномерном движении;
- массы неоднородного тела, и тому подобных;
- а также в задаче о восстановлении функции по её производной.
Ве́ктор — направленный отрезок, то есть отрезок, для которого указано, какая из его граничных точек начало, а какая — конец.
Радика́льная ось — геометрическое место точек, степени которых относительно двух заданных окружностей равны. Иными словами, равны длины четырёх касательных, проведённых к двум данным окружностям из любой точки данного геометрического места точек.
Теорема Фалеса — теорема планиметрии о наборе параллельных секущих к паре прямых.
Прямоуго́льный треуго́льник — это треугольник, в котором один угол прямой.
Ло́ренц-ковариа́нтность — свойство систем математических уравнений, описывающих физические законы, сохранять свой вид при применении преобразований Лоренца. Более точно, всякий физический закон должен представляться релятивистски инвариантной системой уравнений, то есть инвариантной относительно полной ортохронной неоднородной группы Лоренца. Принято считать, что этим свойством должны обладать все физические законы, и экспериментальных отклонений от него не обнаружено.
В евклидовой геометрии равнобедренная трапеция — это выпуклый четырёхугольник с осью симметрии, проходящей через середины двух противоположных сторон. Этот четырёхугольник является частным случаем трапеций. В любой равнобедренной трапеции две противоположные стороны (основания) параллельны, а две другие стороны (боковые) имеют одинаковые длины. Диагонали также имеют одинаковые длины. Углы при каждом основании равны и углы при разных основаниях являются смежными.
В евклидовой геометрии описанный четырёхугольник — это выпуклый четырёхугольник, стороны которого являются касательными к одной окружности внутри четырёхугольника. Эта окружность называется вписанной в четырёхугольник. Описанные четырёхугольники являются частным случаем описанных многоугольников.
Вписанный четырёхугольник — это четырёхугольник, вершины которого лежат на одной окружности. Эта окружность называется описанной. Обычно предполагается, что четырёхугольник выпуклый, но бывают и самопересекающиеся вписанные четырёхугольники. Формулы и свойства, данные ниже, верны только для выпуклых четырёхугольников.
Теорема о равнобедренном треугольнике — классическая теорема геометрии, утверждающая, что углы, противолежащие боковым сторонам равнобедренного треугольника, равны. Эта теорема появляется как предложение 5 книги 1 «Начал» Евклида.