Теория узлов — изучение вложений одномерных многообразий в трёхмерное евклидово пространство или в сферу . В более широком смысле предметом теории узлов являются вложения сфер в многообразия и вложения многообразий в целом.
Редуктивная группа — алгебраическая группа , для которой унипотентный радикал её компоненты единицы является тривиальным. Над незамкнутым полем редуктивность алгебраической группы определяется как редуктивность её над замыканием основного поля.
— наибольшая особая простая группа Ли. была открыта Вильгельмом Киллингом в 1888—1890 годах, а современное её обозначение пришло из классификации простых алгебр Ли, которую ввели Эли Картан и Вильгельм Киллинг. Классификация выделяет четыре бесконечных семейства простых алгебр Ли, обозначаемых , , , , и пять особых случаев, обозначаемых E6, E7, E8, F4 и G2.
Диаграмма Дынкина — вид графов, в которых некоторые рёбра удвоены или утроены. Кратные рёбра, с некоторыми ограничениями, являются ориентированными. Названы по имени советского математика Евгения Дынкина, впервые применившего их в 1946 году.
Спорадическая группа — одна из 26 исключительных групп в теореме о классификации простых конечных групп.
SL(2,R) или SL2(R) — это группа вещественных матриц 2 × 2 с единичным определителем:
Бинарная циклическая группа n-угольника — это циклическая группа порядка 2n, , понимаемая как расширение циклической группы циклической группой 2-го порядка.
Диаграмма Коксетера — Дынкина — это граф с помеченными числами рёбрами, представляющими пространственные связи между набором зеркальных симметрий . Диаграмма описывает калейдоскопичное построение — каждая «вершина» графа представляет зеркало, а метки ветвей задают величину двугранного угла между двумя зеркалами . Непомеченные ветви неявно подразумевают порядок 3.
Бинарная группа икосаэдра 2I или <2,3,5> — это неабелева группа порядка 120. Группа является расширением группы икосаэдра I или (2,3,5) порядка 60 циклической группой порядка 2 и является прообразом группы икосаэдра при 2:1 накрывающем гомоморфизме
В теории групп дициклическая группа Dicn— это некоммутативная группа порядка 4n, являющаяся расширением циклической группы порядка 2n. Эта группа также называется обобщённой группой кватернионов и обозначается Q4n.
Точечная группа в трёхмерном пространстве — группа изометрий в трёхмерном пространстве, не перемещающая начало координат, или группа изометрий сферы. Группа является подгруппой ортогональной группы O(3), группы всех изометрий, оставляющих начало координат неподвижным, или, соответственно, группы ортогональных матриц. O(3) сама является подгруппой евклидовой группы E(3) движений 3-мерного пространства.
Фраза группа лиева типа обычно означает конечную группу, которая тесно связана с группой рациональных точек редуктивной линейной алгебраической группы со значениями в конечном поле. Термин «группа лиева типа» не имеет общепризнанного точного определения, но важный набор конечных простых групп лиева типа точное определение имеет и они составляют большинство групп в классификации простых конечных групп.
Группы Ри — это группы лиева типа над конечным полем, которые построил Ри из исключительных автоморфизмов диаграмм Дынкина, которые обращают направление кратных рёбер, что обобщает группы Судзуки, которые нашёл Судзуки, используя другой метод. Группы были последними открытыми в бесконечных семействах конечных простых групп.
Голоно́ми́я — один из инвариантов связности в расслоении над гладким многообразием, сочетающий свойства кривизны и монодромии, и имеющий важное значение как в геометрии, так и геометризированных областях естествознания, таких как теория относительности и теория струн. Обыкновенно речь идёт о голономии связностей в векторном расслоении, хотя в равной степени имеет смысл говорить о голономии связности в главном расслоении или даже голономии связности Эресманна в локально тривиальном топологическом расслоении.
Полупростая алгебра Ли — алгебра Ли, являющаяся прямой суммой простых алгебр Ли, то есть неабелевых алгебр Ли без нетривиальных идеалов.