Кольцо́ в общей алгебре — алгебраическая структура, в которой определены операция обратимого сложения и операция умножения, по свойствам похожие на соответствующие операции над числами. Простейшими примерами колец являются совокупности чисел, совокупности числовых функций, определённых на заданном множестве. Во всех случаях имеется множество, похожее на совокупности чисел в том смысле, что его элементы можно складывать и умножать, причём эти операции ведут себя естественным образом.
По́ле в общей алгебре — множество, для элементов которого определены операции сложения, взятия противоположного значения, умножения и деления, причём свойства этих операций близки к свойствам обычных числовых операций. Простейшим полем является поле рациональных чисел (дробей). Элементы поля не обязательно являются числами, поэтому, несмотря на то, что названия операций поля взяты из арифметики, определения операций могут быть далеки от арифметических.
Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, который представляет собой совокупность строк и столбцов, на пересечении которых находятся его элементы. Количество строк и столбцов задаёт размер матрицы. Матрицу можно также представить в виде функции двух дискретных аргументов. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Метри́ческий те́нзор, или ме́трика, — симметричное тензорное поле ранга (0,2) на гладком многообразии, посредством которого задаётся скалярное произведение векторов в касательном пространстве. Иначе говоря, метрический тензор задаёт билинейную форму на касательном пространстве к этой точке, обладающую свойствами скалярного произведения и гладко зависящую от точки.
Теория среднего поля или теория самосогласованного поля — подход к изучению поведения больших и сложных стохастических систем в физике и теории вероятностей через исследование простых моделей. Такие модели рассматривают многочисленные малые компоненты, которые взаимодействуют между собой. Влияние других индивидуальных компонент на заданный объект аппроксимируется усреднённым эффектом, благодаря чему задача многих тел сводится к одночастичной задаче.
Вторая квадратичная форма поверхности ― квадратичная форма на касательном расслоении поверхности, которая, в отличие от первой квадратичной формы, определяет внешнюю геометрию поверхности в окрестности данной точки.
Концентра́ция части́ц — физическая величина, равная отношению числа частиц N к объёму V, в котором они находятся:
Теорема о равнораспределении кинетической энергии по степеням свободы, закон равнораспределения, теорема о равнораспределении — связывает температуру системы с её средней энергией в классической статистической механике. В первоначальном виде теорема утверждала, что при тепловом равновесии энергия разделена одинаково между её различными формами, например, средняя кинетическая энергия поступательного движения молекулы должна равняться средней кинетической энергии её вращательного движения.
Формулы Грина — Кубо или соотношения Грина — Кубо связывают кинетические коэффициенты линейных диссипативных процессов с временны́ми корреляционными функциями соответствующих потоков.
Матричная квантовая механика — это формулировка квантовой механики, созданная Вернером Гейзенбергом, Максом Борном и Паскуалем Йорданом в 1925 году. Матричная квантовая механика была первой концептуально автономной и логически непротиворечивой формулировкой квантовой механики. Её описание квантовых скачков заменило модель Бора для электронных орбит. Это было сделано путём интерпретации физических свойств частиц как матриц, которые эволюционируют во времени. Матричная механика эквивалентна волновой формулировке Шрёдингера квантовой механики на основе теоремы Риса — Фишера, как это проявляется в обозначениях бра и кет Дирака.
Структурная теорема для конечнопорождённых модулей над областями главных идеалов является обобщением теоремы о классификации конечнопорождённых абелевых групп. Эта теорема предоставляет общий способ понимания некоторых результатов о канонических формах матриц.
Нормальная форма Смита — это диагональная матрица над областью главных идеалов, каждый следующий диагональный элемент которой делится на предыдущий. Любую матрицу над областью главных идеалов можно привести к нормальной форме Смита путём умножения слева и справа на обратимые матрицы.
Тест Адлемана-Померанса-Румели — наиболее эффективный, детерминированный и безусловный на сегодняшний день тест простоты чисел, разработанный в 1983 году. Назван в честь его исследователей — Леонарда Адлемана, Карла Померанса и Роберта Румели. Алгоритм содержит арифметику в цикломатических полях.
Конечное кольцо в общей алгебре — это кольцо, содержащее конечное число элементов. Другими словами, это (непустое) конечное множество , на котором определены операции сложения и умножения, причём относительно сложения образует коммутативную конечную группу, а умножение связано со сложением обычными распределительными законами. Существование единицы и коммутативность умножения в кольце не всегда имеют место, могут также существовать делители нуля.
Полуопределённое программирование — подраздел выпуклого программирования, которое занимается оптимизацией линейной целевой функции на пересечении конусов положительно полуопределённых матриц с аффинным пространством.
В теории многих тел термин функция Грина иногда используется как синоним корреляционной функции, но относится к корреляторам операторов поля или операторам рождения и уничтожения.