Число́ — одно из основных понятий математики, используемое для количественной характеристики, сравнения, нумерации объектов и их частей.
Обра́тное число́ к данному числу x — это число, умножение которого на x даёт единицу. Принятая запись: или . Два числа, произведение которых равно 1, называются взаимно обратными.
Пространство Кала́би — Яу — компактное комплексное многообразие с кэлеровой метрикой, для которой тензор Риччи обращается в ноль. В теории суперструн иногда предполагают, что дополнительные измерения пространства-времени принимают форму 6-мерного многообразия Калаби — Яу, что привело к идее зеркальной симметрии. Название было придумано в 1985 году, в честь Эудженио Калаби, который впервые предположил, что такие размерности могут существовать, и Яу Шинтуна, который в 1978 году доказал гипотезу Калаби.
Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, который представляет собой совокупность строк и столбцов, на пересечении которых находятся его элементы. Количество строк и столбцов задаёт размер матрицы. Матрицу можно также представить в виде функции двух дискретных аргументов. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Ко́мпле́ксный ана́лиз, тео́рия фу́нкций ко́мпле́ксного переме́нного — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Ко́мпле́ксная пло́скость — геометрическое представление множества комплексных чисел .
Голоморфная функция, иногда называемая регулярной функцией — функция комплексного переменного, определённая на открытом подмножестве комплексной плоскости и комплексно дифференцируемая в каждой точке.
Теория групп — раздел общей алгебры, изучающий алгебраические структуры, называемые группами, и их свойства. Группа является центральным понятием в общей алгебре, так как многие важные алгебраические структуры, такие как кольца, поля, векторные пространства, являются группами с расширенным набором операций и аксиом. Группы возникают во всех областях математики, и методы теории групп оказывают сильное влияние на многие разделы алгебры. В процессе развития теории групп построен мощный инструментарий, во многом определивший специфику общей алгебры в целом, сформирован собственный глоссарий, элементы которого активно заимствуются смежными разделами математики и приложениями. Наиболее развитые ветви теории групп — линейные алгебраические группы и группы Ли — стали самостоятельными областями математики.
Траекто́рия материа́льной то́чки — линия в пространстве, по которой движется тело, представляющая собой множество точек, в которых находилась, находится или будет находиться материальная точка при своём перемещении в пространстве относительно выбранной системы отсчёта. Существенно, что понятие о траектории имеет физический смысл даже при отсутствии какого-либо по ней движения.
Га́уссовы це́лые чи́сла — это комплексные числа, у которых как вещественная, так и мнимая часть — целые числа.
Алгебраическое многообразие — центральный объект изучения алгебраической геометрии. Классическое определение алгебраического многообразия — множество решений системы алгебраических уравнений над действительными или комплексными числами. Современные определения обобщают его различными способами, но стараются сохранить геометрическую интуицию, соответствующую этому определению.