Рибонуклеи́новая кислота́ (РНК) — одна из трёх основных макромолекул, которые содержатся в клетках всех живых организмов и играют важную роль в кодировании, прочтении, регуляции и экспрессии генов.
Транскри́пция — происходящий во всех живых клетках процесс синтеза РНК с использованием ДНК в качестве матрицы; перенос генетической информации с ДНК на РНК.
Интроны — участки ДНК, копии которых удаляются из первичного транскрипта и отсутствуют в зрелой РНК.
Сплайсинг — процесс вырезания определённых нуклеотидных последовательностей из молекул РНК и соединения последовательностей, сохраняющихся в «зрелой» молекуле, в ходе процессинга РНК. Наиболее часто этот процесс встречается при созревании матричной, или информационной, РНК (мРНК) у эукариот, при этом путём биохимических реакций с участием РНК и белков из мРНК удаляются участки, не кодирующие белок (интроны) и соединяются друг с другом кодирующие аминокислотную последовательность участки — экзоны. Таким образом незрелая пре-мРНК превращается в зрелую мРНК, с которой считываются (транслируются) белки клетки. Большинство генов прокариот, кодирующих белки, не имеют интронов, поэтому у них сплайсинг пре-мРНК встречается редко. У представителей эукариот, бактерий и архей встречается также сплайсинг транспортных РНК (тРНК) и других некодирующих РНК.
Ма́тричная рибонуклеи́новая кислота́ — РНК, содержащая информацию о первичной структуре белков. мРНК синтезируется на основе ДНК в ходе транскрипции, после чего, в свою очередь, используется в ходе трансляции как матрица для синтеза белков. Тем самым мРНК играет важную роль в «проявлении» (экспрессии) генов.
Сплайсосо́ма — ядерная структура, состоящая из молекул РНК и белков и осуществляющая удаление некодирующих последовательностей (интронов) из предшественников мРНК. Этот процесс называется сплайсингом . Сплайсосому составляют пять малых ядерных РНК (мяРНК), и каждая из них связана по меньшей мере с семью белковыми факторами, образуя малые ядерные рибонуклеопротеины (мяРНП). Содержащиеся в сплайсосоме мяРНП называются U1, U2, U4, U5 и U6.
Центральная догма молекулярной биологии — обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году и приведено в соответствие с накопившимися к тому времени данными в 1970 году. Переход генетической информации последовательно от ДНК к РНК и затем от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК → ДНК. В природе встречаются также переходы РНК → РНК и РНК → ДНК, а также изменение конформации белков, передаваемое от молекулы к молекуле.
Малые ядрышковые РНК — класс малых РНК, участвующих в химических модификациях рибосомных РНК, а также тРНК и малых ядерных РНК. По классификации MeSH малые ядрышковые РНК считаются подгруппой малых ядерных РНК. мякРНК обычно относят к «гидовым» РНК, однако их нельзя путать с гидовыми РНК, направляющими редактирование РНК у трипаносом.
Альтернати́вный спла́йсинг — вариант сплайсинга матричных РНК (мРНК), при котором в ходе экспрессии гена на основе одного и того же первичного транскрипта (пре-мРНК) происходит образование нескольких зрелых мРНК. Структурные и функциональные различия образовавшихся транскриптов могут быть вызваны как выборочным включением в зрелую мРНК экзонов первичного транскрипта, так и сохранением в ней частей интронов. Наиболее распространённая разновидность альтернативного сплайсинга предусматривает пропуск экзона: отдельные экзоны транскрипта при определённых условиях могут быть как включены в зрелую мРНК, так и пропущены.
Регуляторная функция белков ― осуществление белками регуляции процессов в клетке или в организме, что связано с их способностью к приёму и передаче информации. Действие регуляторных белков обратимо и, как правило, требует присутствия лиганда. Постоянно открывают всё новые и новые регуляторные белки, в настоящее время известна, вероятно, только малая их часть.
Кэп, 5'-кэп, или кэп-структура — структура на 5'-конце матричных РНК (мРНК) и некоторых других РНК эукариот. Кэп состоит из одного или нескольких модифицированных нуклеотидов и характерен только для транскриптов, синтезируемых РНК-полимеразой II. Наличие кэпа — один из признаков, отличающих эукариотические мРНК от прокариотических, которые несут трифосфат на 5'-конце. Это и другие отличия обуславливают существенно более высокую стабильность, особый механизм инициации трансляции и другие особенности жизненного цикла эукариотической мРНК.
3′-Нетранслируемая область — некодирующий участок мРНК, располагающийся на её 3′-конце после кодирующей области. Такое же название имеет участок ДНК, соответствующий 3′-UTR транскрипта. 3′-UTR может принимать участие в регуляции эффективности трансляции, стабильности мРНК, содержать сигналы полиаденилирования и сайты связывания микроРНК, а также выполнять ряд других регуляторных функций.
Нуклеоли́н — белок, имеющийся у высших эукариот. У человека он кодируется геном NCL, расположенным на 2-й хромосоме в локусе 2q37.1.
Фибриллари́н — ядрышковый белок, у человека кодируется геном FBL, локализованным на 19-й хромосоме. Основной функцией фибрилларина является участие в транскрипции и процессинге рРНК, поэтому он часто используется как маркер активных ядрышек. Фибрилларин является метилтрансферазой, то есть переносит метильную группу с S-аденозилметионина на 2'-гидроксильную группу рибозы в молекуле РНК-мишени. Кроме того, фибрилларин опосредует метилирование остатка глутамина Gln105 в гистоне Н2А. Белки, по структуре и функциям соответствующие фибрилларину, были найдены и у архей, которые являются прокариотами и не имеют ядрышек. Повышенный уровень фибрилларина обнаруживается в случае многих раковых заболеваний. Кроме того, фибрилларин может взаимодействовать со многими вирусными белками.
Транс-спла́йсинг — особая форма процессинга РНК у эукариот, в ходе которого экзоны из двух разных первичных транскриптов РНК соединяются конец к концу. В то время как при «нормальном» цис-сплайсинге процессингу подвергается одна молекула, в транс-сплайсинге происходит образование одной молекулы РНК из разных, не соединённых между собой предшественников мРНК. У некоторых организмов транс-сплайсингу подвергаются лишь некоторые мРНК, а у некоторых он происходит при созревании большинства мРНК.
Но́нсенс-опосре́дованный распа́д мРНК — одна из нескольких цитоплазматических систем клетки, осуществляющих контроль качества мРНК. По пути NMD расщепляются мРНК, содержащие стоп-кодоны в неправильных местах и, следовательно, неправильно сплайсированные. Таким образом, NMD предохраняет клетку от синтеза усечённых белков, которые могут оказаться опасными для клетки. Регулируя экспрессию генов, NMD оказывается вовлечённым в такие клеточные процессы, как рост и пролиферация, ответ на стресс или вирусное вторжение, регулирует работу приобретённого иммунитета, активность нейронов и поведение.
Я́дерные спе́клы, или спе́клы, или B-снурпосо́мы, или компа́ртменты фа́кторов спла́йсинга, или доме́ны SC-35, или кла́стеры интерхромати́новых гра́нул — ядерные тельца, регулирующие сплайсинг. В ядерных спеклах находятся факторы сплайсинга и малые ядерные рибонуклеопротеины. Изменения в белковом составе и функционировании ядерных спекл приводят к изменениям в альтернативном сплайсинге пре-мРНК, поэтому считается, что ключевой функцией ядерных спекл является регуляция доступности факторов сплайсинга в сайтах транскрипции. Недавние исследования показали, что в ядерных спеклах также находятся белки, задействованные в регуляции локализации хромосом, модификации хроматина, транскрипции, процессинге 3'-концов транскриптов, модификации мРНК, белки, полностью покрывающие мРНК, и мРНК-рибонуклеопротеины, поэтому ядерные спеклы рассматриваются как крупнейшие центры регуляции всех этапов экспрессии ядерных генов.
Кольцевы́е РНК — тип молекул РНК, концы которых замкнуты друг на друга с помощью ковалентной связи между концевыми нуклеотидами. Кольцевые РНК могут образовываться из интронов или в результате выпетливания различных участков созревающего транскрипта. Хотя кольцевые РНК обычно относят к числу некодирующих РНК, в настоящее время накапливаются свидетельства того, что они могут кодировать пептиды. Конкретные функции кольцевых РНК до конца не изучены, но, вероятно, они задействованы в регуляции экспрессии генов. Кольцевых РНК особенно много в головном мозге, они свободно циркулируют в плазме крови. Возможно, в будущем кольцевые РНК будут использовать в качестве биомаркеров различных видов рака.
Эта статья относится к регионам в последовательности эукариотической хромосомы. Некоторые регионы могут быть включены более чем в одну группу, так что представленную классификацию не стоит рассматривать как полностью раздельную.