Факториза́цией натурального числа называется его разложение в произведение простых множителей. Существование и единственность такого разложения следует из основной теоремы арифметики.
Недетерминированная машина Тьюринга (НМТ) — машина Тьюринга, функция перехода которой представляет собой недетерминированный конечный автомат (НКА).
Алгоритм Гровера — квантовый алгоритм решения задачи перебора, то есть нахождения решения уравнения
NP-полная задача — в теории алгоритмов задача с ответом «да» или «нет» из класса NP, к которой можно свести любую другую задачу из этого класса за полиномиальное время. Таким образом, NP-полные задачи образуют в некотором смысле подмножество «типовых» задач в классе NP: если для какой-то из них будет найден «полиномиально быстрый» алгоритм решения, то и любую другую задачу из класса NP можно будет решить так же «быстро».
В теории алгоритмов классом P называют множество задач, для которых существуют «быстрые» алгоритмы решения. Класс P включён в более широкие классы сложности алгоритмов.
В теории алгоритмов классом NP называют множество задач разрешимости, решение которых возможно проверить на машине Тьюринга за время, не превосходящее значения некоторого многочлена от размера входных данных, при наличии некоторых дополнительных сведений.
Задача о рюкзаке — NP-полная задача комбинаторной оптимизации. Своё название получила от конечной цели: уложить как можно большее число ценных вещей в рюкзак при условии, что вместимость рюкзака ограничена. С различными вариациями задачи о рюкзаке можно столкнуться в экономике, прикладной математике, криптографии и логистике.
Вычисли́тельная сло́жность — понятие в информатике и теории алгоритмов, обозначающее функцию зависимости объёма работы, которая выполняется некоторым алгоритмом, от размера входных данных. Раздел, изучающий вычислительную сложность, называется теорией сложности вычислений. Объём работы обычно измеряется абстрактными понятиями времени и пространства, называемыми вычислительными ресурсами. Время определяется количеством элементарных шагов, необходимых для решения задачи, тогда как пространство определяется объёмом памяти или места на носителе данных. Таким образом, в этой области предпринимается попытка ответить на центральный вопрос разработки алгоритмов: «как изменится время исполнения и объём занятой памяти в зависимости от размера входа?». Здесь под размером входа понимается длина описания данных задачи в битах, а под размером выхода — длина описания решения задачи.
Дискре́тное логарифми́рование (DLOG) — задача обращения функции в некоторой конечной мультипликативной группе .
Односторонняя функция — математическая функция, которая легко вычисляется для любого входного значения, но трудно найти аргумент по заданному значению функции. Здесь «легко» и «трудно» должны пониматься с точки зрения теории сложности вычислений. Разрыв между сложностью прямого и обратного преобразований определяет криптографическую эффективность односторонней функции. Неинъективность функции не является достаточным условием для того, чтобы называть её односторонней. Односторонние функции могут называться также трудно обратимыми или необратимыми.
В информатике временна́я сложность алгоритма определяется как функция от длины строки, представляющей входные данные, равная времени работы алгоритма на данном входе. Временная сложность алгоритма обычно выражается с использованием нотации «O» большое, которая учитывает только слагаемое самого высокого порядка, а также не учитывает константные множители, то есть коэффициенты. Если сложность выражена таким способом, говорят об асимптотическом описании временной сложности, то есть при стремлении размера входа к бесконечности. Например, если существует число , такое, что время работы алгоритма для всех входов длины не превосходит , то временную сложность данного алгоритма можно асимптотически оценить как .
Тео́рия алгори́тмов — раздел математики, изучающий общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач, асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п. Вместе с математической логикой теория алгоритмов образует теоретическую основу вычислительных наук, теории передачи информации, информатики, телекоммуникационных систем и других областей науки и техники.
Тест Аграва́ла — Кая́ла — Саксе́ны — единственный известный на данный момент универсальный полиномиальный, детерминированный и безусловный тест простоты чисел, основанный на обобщении малой теоремы Ферма на многочлены.
Теория сложности вычислений — подраздел теоретической информатики, занимающейся исследованием сложности алгоритмов для решения задач на основе формально определённых моделей вычислительных устройств. Сложность алгоритмов измеряется необходимыми ресурсами, в основном это продолжительность вычислений или необходимый объём памяти. В отдельных случаях исследуются другие степени сложности, такие как размер микросхем, или количество процессоров, необходимая для работы параллельных алгоритмов.
Задача о сумме подмножеств — это важная задача в теории сложности алгоритмов и криптографии. Задача заключается в нахождении непустого подмножества некоторого набора чисел, чтобы сумма чисел этого подмножества равнялась нулю. Например, пусть задано множество {−7, −3, −2, 5, 8}, тогда подмножество {−3, −2, 5} даёт в сумме ноль. Задача является NP-полной.
Аппроксимационный алгоритм — в исследовании операций алгоритм, использующийся для поиска приближённого решения оптимизационной задачи.
SWIFFT — набор криптографических хеш-функций с доказанной стойкостью. Они основываются на быстром преобразовании Фурье и используют алгоритм LLL-редуцированных базисов. Криптографическая стойкость функций SWIFFT математически доказана при использовании рекомендуемых параметров. Поиск коллизий в SWIFFT в худшем случае требует не меньше временных затрат, чем нахождение коротких векторов в циклических/идеальных решётках. Практическое применение SWIFFT будет ценно именно в тех случаях, когда стойкость к коллизиям особенно важна. Например, цифровые подписи, которые должны оставаться надёжными длительное время.
Гипотеза об экспоненциальном времени — это недоказанное допущение о вычислительной сложности, которое сформулировали Импальяццо и Патури. Гипотеза утверждает, что 3-SAT не может быть решена за субэкспоненциальное время в худшем случае. Из верности гипотезы об экспоненциальном времени, если она верна, следовало бы, что P ≠ NP, но гипотеза является более сильным утверждением. Из утверждения гипотезы можно показать, что многие вычислительные задачи эквиваленты по сложности в том смысле, что если одна из них имеет алгоритм экспоненциального времени, то все они имеют алгоритмы такой же сложности.
Подпись при обучении с ошибками в кольце — один из классов криптосистем с открытым ключом, основанный на задаче обучения с ошибками в кольце, который заменяет используемые алгоритмы подписи RSA и ECDSA. В течение последнего десятилетия проводились активные исследования по созданию криптографических алгоритмов, которые остаются безопасными, даже если у злоумышленника есть ресурсы квантового компьютера. Подпись при обучении с ошибками в кольце относится к числу пост-квантовых подписей с наименьшим открытым ключом и размерами подписи. Использование общей проблемы обучения с ошибками в криптографии было введено Одедом Регевым в 2005 году и послужило источником нескольких криптографических разработок. Основоположники криптографии при обучении с ошибками в кольце, считают, что особенностью этих алгоритмов, основанных на обучении с ошибками, является доказуемое сокращение известных сложных задач. Данная подпись имеет доказуемое сокращение до задачи нахождения кратчайшего вектора в области криптографии на решётках. Это означает, что если можно обнаружить атаку на криптосистему RLWE, то целый класс предполагаемых сложных вычислительных проблем будет иметь решение. Первая подпись на основе RLWE была разработана Вадимом Любашевским и уточнена в 2011 году. Данная статья освещает фундаментальные математические основы RLWE и основана на схеме под названием GLYPH.