Функция Мёбиуса — мультипликативная арифметическая функция, применяемая в теории чисел и комбинаторике, названа в честь немецкого математика Мёбиуса, который впервые рассмотрел её в 1831 году.
Рядом Дирихле называется ряд вида
Арифметическая функция — функция, определённая на множестве натуральных чисел и принимающая значения из множества комплексных чисел .
В математике n-м гармоническим числом называется сумма обратных величин первых n последовательных чисел натурального ряда:
В математике свободным от квадратов, или бесквадратным, называется число, которое не делится ни на один квадрат, кроме 1. К примеру, 10 — свободное от квадратов, а 18 — нет, так как 18 делится на 9 = 32. Начало последовательности свободных от квадратов чисел таково:
- 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, … последовательность A005117 в OEIS
Бе́та-фу́нкция Дирихле́ в математике, иногда называемая бета-функцией Каталана — специальная функция, тесно связанная с дзета-функцией Римана. Она является частным случаем L-функции Дирихле. Она названа в честь немецкого математика Петера Густава Лежён-Дирихле, а альтернативное название — в честь бельгийского математика Эжена Шарля Каталана.
Полига́мма-фу́нкция порядка m в математике определяется как (m+1)-я производная натурального логарифма гамма-функции,
В математике Дзета-функция Гурвица, названная в честь Адольфа Гурвица, — это одна из многочисленных дзета-функций, являющихся обобщениями дзета-функции Римана. Формально она может быть определена степенным рядом для комплексных аргументов s, при Re(s) > 1, и q, Re(q) > 0:
Свёртка Дирихле — бинарная операция, определённая для арифметических функций, используемая в теории чисел, введена и исследована немецким математиком Дирихле.
Фу́нкция дели́телей — арифметическая функция, связанная с делителями целого числа. Функция известна также под именем фу́нкция диви́зоров. Применяется, в частности, при исследовании связи дзета-функции Римана и рядов Эйзенштейна для модулярных форм. Изучалась Рамануджаном, который вывел ряд важных равенств в модульной арифметике и арифметических тождествах.
Гипотеза Римана является одной из наиболее важных гипотез в математике. Гипотеза является утверждением о нулях дзета-функции Римана. Различные геометрические и арифметические объекты могут быть описаны так называемыми глобальными L-функциями, которые формально похожи на дзета-функцию Римана. Можно тогда задать тот же вопрос о корнях этих L-функций, что даёт различные обобщения гипотезы Римана. Многие математики верят в верность этих обобщений гипотезы Римана. Единственный случай, когда такая гипотеза была доказана, произошёл в алгебраическом поле функций.
Дзета-функция Дедекинда — это дзета-функция алгебраического числового поля , являющаяся обобщением дзета-функции Римана.
L-функция Артина — это вид ряда Дирихле, связанный с представлением группы Галуа расширения числового поля. Эти функции были введены в 1923 Эмилем Артином, в связи с его работой в теории полей классов. Фундаментальные свойства этих функций, в частности гипотеза Артина, описанная ниже, оказались устойчивыми к легким доказательствам. Одной из целей предлагаемой неабелевой теории полей классов является включение комплексно-аналитических L-функций Артина в более широкую теорию, которая будет вытекать из автоморфных форм и программы Ленглендса. До сих пор лишь небольшая часть такой теории была построена на прочной основе.
В теории многих тел термин функция Грина иногда используется как синоним корреляционной функции, но относится к корреляторам операторов поля или операторам рождения и уничтожения.
В теории чисел, функция Лиувилля — мультипликативная арифметическая функция, равная +1, если число является произведением чётного числа простых чисел, и −1 в противном случае.