Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, который представляет собой совокупность строк и столбцов, на пересечении которых находятся его элементы. Количество строк и столбцов задаёт размер матрицы. Матрицу можно также представить в виде функции двух дискретных аргументов. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Жорданова матрица — квадратная блочно-диагональная матрица над полем , с блоками вида
Характеристический многочлен матрицы — многочлен, определяющий её собственные значения.
Вы́рожденная ма́трица — квадратная матрица определитель которой равен нулю.
В математике квадра́тная ма́трица — это матрица, у которой число строк совпадает с числом столбцов, и это число называется порядком матрицы. Любые две квадратные матрицы одинакового порядка можно складывать и умножать.
Симметричной (Симметрической) называют квадратную матрицу, элементы которой симметричны относительно главной диагонали. Более формально, симметричной называют такую матрицу , что .
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная матрица, поэтому собственные векторы и собственные значения часто определяются в контексте использования таких матриц.
Гессиан функции — симметрическая квадратичная форма, описывающая поведение функции во втором порядке.
Нормальная матрица — комплексная квадратная матрица , коммутирующая со своей эрмитово-сопряжённой матрицей:
- .
Метод главных компонент — один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретён Карлом Пирсоном в 1901 году. Применяется во многих областях, в том числе в эконометрике, биоинформатике, обработке изображений, для сжатия данных, в общественных науках.
Разложе́ние ма́трицы — представление матрицы в виде произведения матриц, обладающих некоторыми определёнными свойствами. У каждого класса матричных разложений имеется своя область применения; в частности, многие эффективные алгоритмы вычислительной линейной алгебры основаны на построении соответствующих матричных разложений.
Разложение Шура — разложение матрицы на унитарную, верхнюю треугольную и обратную унитарную матрицы, названное именем Исая Шура.
Алгоритм вычисления собственных значений — алгоритм, позволяющий определить собственные значения и собственные векторы заданной матрицы. Создание эффективных и устойчивых алгоритмов для этой задачи является одной из ключевых задач вычислительной математики.
В линейной алгебре квадратная матрица A называется диагонализируемой, если она подобна диагональной матрице, то есть если существует невырожденная матрица P, такая что P−1AP является диагональной матрицей. Если V — конечномерное векторное пространство, то линейное отображение T : V → V называется диагонализируемым, если существует упорядоченный базис в V, при котором T представляется в виде диагональной матрицы. Диагонализацией называется процесс нахождения соответствующей диагональной матрицы для диагонализируемой матрицы или линейного отображения. Квадратная матрица, которую нельзя диагонализировать, называется дефектной.
Симплектическая матрица — это матрица M размера 2n×2n с вещественными элементами, которая удовлетворяет условию
Круги Гершгорина — набор кругов на комплексной плоскости, определяемых по квадратной матрице, таких, что все собственные значения данной матрицы заведомо лежат внутри каких-то из этих кругов. Таким образом, они позволяют получить априорное ограничение на расположение собственных значений квадратной матрицы. Впервые их описание было опубликовано советским математиком Семёном Ароновичем Гершгориным в 1931 году.