Многоуго́льник — геометрическая фигура, обычно определяемая как часть плоскости, ограниченная замкнутой ломаной. Если граничная ломаная не имеет точек самопересечения, многоугольник называется простым. Например, треугольники и квадраты — простые многоугольники, а пентаграмма — нет.
Ромб — это параллелограмм, у которого все стороны равны.
Четырёхугольник — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), последовательно соединяющих эти точки. Различают выпуклые и невыпуклые четырёхугольники, невыпуклый четырёхугольник может быть самопересекающимся. Четырёхугольник без самопересечений называется простым, часто под термином «четырёхугольник» имеются в виду только простые четырёхугольники.
Теоре́ма Паска́ля — классическая теорема проективной геометрии.
Окружность называют вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Геронов треугольник — треугольник, стороны и площадь которого являются целыми числами. Героновы треугольники названы в честь греческого математика Герона. Термин иногда понимается несколько шире и распространяется на треугольники, имеющие рациональные стороны и площадь.
Пра́вильный икоса́эдр — правильный выпуклый многогранник, двадцатигранник, одно из платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин — 12. Икосаэдр имеет 59 звёздчатых форм.
Правильный пятиугольник — геометрическая фигура, правильный многоугольник с пятью сторонами.
Пропорционирование — способ гармонизации формы на основе равенства количественных отношений её частей. Пропорциональностью называют равенство (постоянство) отношений двух или более переменных величин. Иную редакцию той же закономерности даёт Большая российская энциклопедия: «Равенство между двумя отношениями четырёх величин». В математике пропорцией называется такое отношение (зависимость) величин, которое при увеличении или уменьшении одной величины в несколько раз другая увеличивается или уменьшается во столько же раз. Например, 1 : 2 = 3 : 6. Отношение таких величин называется коэффициентом пропорциональности или константой пропорциональности.
Соизмери́мые величи́ны — исторический термин, обозначающий величины, для которых существует общая мера. Общей мерой величин называют величину, которая целое число раз содержится в каждой из них. Если такой меры не существует, то такие величины называют несоизмери́мыми.
Описанный многоугольник, известный также как тангенциальный многоугольник — это выпуклый многоугольник, который содержит вписанную окружность. Это такая окружность, по отношению к которой каждая сторона описанного многоугольника является касательной. Двойственный многоугольник описанного многоугольника — это многоугольник, который имеет описанную окружность, проходящую через все его вершины.
Равносторо́нний многоуго́льник — многоугольник, у которого все стороны равны. Например, равносторонний треугольник — это треугольник, у которого все три стороны одинаковы; все равносторонние треугольники подобны и имеют внутренние углы 60 градусов. Равносторонний четырёхугольник — это ромб, и квадрат является частным случаем ромба.
Целочисленный треугольник — это треугольник, длины всех сторон которого выражаются целыми числами. Рациональный треугольник можно определить как треугольник, стороны которого являются рациональными числами. Любой рациональный треугольник можно привести к целочисленному, так что нет существенной разницы между целочисленными и рациональными треугольниками. Заметим, однако, что существуют и другие определения «рационального треугольника». Так, в 1914 Кармайкл использовал этот термин для обозначения того, что мы теперь называем героновым треугольником. Сомос (Somos) использует термин для треугольников, отношения сторон которого являются рациональными числами. Конвей и Гай определяют рациональный треугольник как треугольник с рациональными сторонами и углами — в этом случае рациональными будут только равносторонние треугольники с рациональными сторонами.
В евклидовой геометрии описанный четырёхугольник — это выпуклый четырёхугольник, стороны которого являются касательными к одной окружности внутри четырёхугольника. Эта окружность называется вписанной в четырёхугольник. Описанные четырёхугольники являются частным случаем описанных многоугольников.
Вписанный четырёхугольник — это четырёхугольник, вершины которого лежат на одной окружности. Эта окружность называется описанной. Обычно предполагается, что четырёхугольник выпуклый, но бывают и самопересекающиеся вписанные четырёхугольники. Формулы и свойства, данные ниже, верны только для выпуклых четырёхугольников.
Серединный многоугольник — многоугольник, вершинами которого являются середины рёбер исходного многоугольника.
Середина отрезка — точка на заданном отрезке, находящаяся на равном расстоянии от обоих концов данного отрезка. Является центром масс как всего отрезка, так и его конечных точек.
В евклидовой геометрии ортодиагональный четырёхугольник — это четырёхугольник, в котором диагонали пересекаются под прямым углом.
Наибольший многоугольник единичного диаметра — многоугольник с n сторонами, диаметр которого равен единице, и имеющий наибольшую площадь среди других n-угольников диаметра единица. Решением для n = 4 является квадрат, решением для нечётных n является правильный многоугольник, при этом для остальных чётных n правильный многоугольник наибольшим не будет.