Радий
Радий | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
← Франций | Актиний → | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
Внешний вид простого вещества | |||||||||||||||||||||||||||||||
Образец радия | |||||||||||||||||||||||||||||||
Свойства атома | |||||||||||||||||||||||||||||||
Название, символ, номер | Ра́дий / Radium (Ra), 88 | ||||||||||||||||||||||||||||||
Группа, период, блок | 2 (устар. IIA), 7, s-элемент | ||||||||||||||||||||||||||||||
Атомная масса (молярная масса) | 226,0254 а. е. м. (г/моль) | ||||||||||||||||||||||||||||||
Электронная конфигурация | [Rn] 7s2 | ||||||||||||||||||||||||||||||
Химические свойства | |||||||||||||||||||||||||||||||
Радиус иона | (+2e) 143 пм | ||||||||||||||||||||||||||||||
Электроотрицательность | 0,9 (шкала Полинга) | ||||||||||||||||||||||||||||||
Электродный потенциал | Ra←Ra2+ −2,916 В | ||||||||||||||||||||||||||||||
Степени окисления | +2 | ||||||||||||||||||||||||||||||
Энергия ионизации (первый электрон) | 1-й 509,3 (5,2785) кДж/моль (эВ) 2-й 979,0 (10,147) кДж/моль (эВ) | ||||||||||||||||||||||||||||||
Термодинамические свойства простого вещества | |||||||||||||||||||||||||||||||
Плотность (при н. у.) | (при к.т.) 5,5 г/см³ | ||||||||||||||||||||||||||||||
Температура плавления | 1233 К (960 °С) | ||||||||||||||||||||||||||||||
Температура кипения | 2010 К (1737 °С) | ||||||||||||||||||||||||||||||
Мол. теплота плавления | 8,5 кДж/моль | ||||||||||||||||||||||||||||||
Мол. теплота испарения | 113 кДж/моль | ||||||||||||||||||||||||||||||
Молярная теплоёмкость | 29,3[1] Дж/(K·моль) | ||||||||||||||||||||||||||||||
Молярный объём | 45,0 см³/моль | ||||||||||||||||||||||||||||||
Кристаллическая решётка простого вещества | |||||||||||||||||||||||||||||||
Структура решётки | Кубическая объёмноцентрированая | ||||||||||||||||||||||||||||||
Параметры решётки | a = 0,5148 нм[2] | ||||||||||||||||||||||||||||||
Прочие характеристики | |||||||||||||||||||||||||||||||
Теплопроводность | (300 K) (18,6) Вт/(м·К) | ||||||||||||||||||||||||||||||
Номер CAS | 7440-14-4 | ||||||||||||||||||||||||||||||
Наиболее долгоживущие изотопы | |||||||||||||||||||||||||||||||
|
88 | Радий |
7s2 |
Ра́дий (химический символ — Ra, от лат. Radium) — химический элемент 2-й группы (по устаревшей классификации — главной подгруппы второй группы, IIA) седьмого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 88.
Простое вещество радий — это блестящий щелочноземельный металл серебристо-белого цвета, быстро тускнеющий на воздухе. Обладает высокой химической активностью, очень ядовит и канцерогенен. Соединения радия намного более токсичны, чем соединения бария, из-за высокой радиоактивности радия.
Среди изотопов наиболее устойчив нуклид 226Ra (период полураспада около 1600 лет).
История
Французские учёные Пьер и Мария Кюри обнаружили, что отходы, остающиеся после выделения урана из урановой руды (урановая смолка, добывавшаяся в городе Иоахимсталь, Чехия), более радиоактивны, чем чистый уран. Из этих отходов супруги Кюри после нескольких лет интенсивной работы выделили два сильно радиоактивных элемента: полоний и радий. Первое сообщение об открытии радия (в виде смеси с барием) Кюри сделали 26 декабря 1898 года во Французской академии наук. В 1910 году Мария Кюри и Андре Дебьерн выделили чистый радий путём электролиза хлорида радия на ртутном катоде и последующей дистилляции в водороде. Выделенный элемент представлял собой, как сейчас известно, изотоп радий-226, продукт распада урана-238. За открытие радия и полония супруги Кюри получили Нобелевскую премию. Радий образуется через многие промежуточные стадии при радиоактивном распаде изотопа урана-238 и поэтому находится в небольших количествах в урановой руде.
В России радий впервые был получен в экспериментах известного советского радиохимика В. Г. Хлопина. В 1918 году на базе Государственного рентгеновского института было организовано Радиевое отделение, которое в 1922 году получило статус отдельного научного института. Одной из задач Радиевого института были исследования радиоактивных элементов, в первую очередь — радия. Директором нового института стал В. И. Вернадский, его заместителем — В. Г. Хлопин, физический отдел института возглавил Л. В. Мысовский[3].
В Великобритании в 1909 году был открыт Лондонский радиевый институт, который занимался прикладными исследованиями радия в медицине[4].
Многие радионуклиды, возникающие при радиоактивном распаде радия, до того, как была выполнена их химическая идентификация, получили наименования вида радий А, радий B, радий C и т. д. Хотя сейчас известно, что они представляют собой изотопы других химических элементов, их исторически сложившиеся названия по традиции иногда используются:
Изотоп | |
Эманация радия | 222Rn |
Радий A | 218Po |
Радий B | 214Pb |
Радий C | 214Bi |
Радий C1 | 214Po |
Радий C2 | 210Tl |
Радий D | 210Pb |
Радий E | 210Bi |
Радий F | 210Po |
Названная в честь супругов Кюри внесистемная единица активности радиоактивного источника «кюри» (Ки), равная 3,7⋅1010 распадов в секунду, или 37 ГБк, ранее была основана на активности 1 грамма радия-226. Но так как в результате уточнённых измерений было установлено, что активность 1 г радия-226 примерно на 1,3 % меньше, чем 1 Ки, в настоящее время эта единица определяется как 37 миллиардов распадов в секунду (точно).
Происхождение названия
Название «радий» связано с излучением ядер атомов Ra (лат. radius — луч).
Физические и химические свойства
Полная электронная конфигурация атома радия: 1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p67s2
Радий при нормальных условиях представляет собой блестящий белый металл, на воздухе темнеет (вероятно, вследствие образования нитрида радия Ra3N2 или его смеси с оксидом RaO[1]). Реагирует с водой. Ведёт себя подобно барию и стронцию, но более химически активен. Обычная степень окисления — +2. Гидроксид радия Ra(OH)2 — сильное, коррозионное основание.
Металлический радий имеет решётку кубической сингонии (объёмно-центрированная решётка), пространственная группа Im3m, параметры ячейки a = 0,5148 нм[5][6]. Плотность составляет 5,5 г/см3. Температура плавления 969 °C (при давлении 0,65 миллибар)[1], температура кипения 1507 °C[1]. Теплота плавления 8 кДж/моль[1]. Теплота испарения 149,6 кДж/моль[1]. Теплота сублимации 157,9 кДж/моль[1]. Теплоёмкость C0
p 29,3 Дж/(моль·К)[1]. Энтропия S0
298 69,1 Дж/(моль·К)[1].
Ввиду сильной радиоактивности все соединения радия светятся голубоватым светом (радиохемилюминесценция), что хорошо заметно в темноте[7], а в водных растворах его солей происходит радиолиз. Металлический радий-226 выделяет 550 Дж тепла в час на 1 грамм вследствие радиоактивного распада[1]. Кроме энергии, при распаде радия возникает также радон (около 1 мм3 радона-222 из 1 г радия-226 за сутки[1]) и гелий.
В водном растворе радий переходит в катион Ra2+, который не имеет цвета, поэтому все соединения радия имеют белый цвет, но они со временем становятся жёлтыми, а затем приобретают ещё более тёмные цвета из-за альфа-излучения радия. Хлорид радия менее растворим в воде, чем хлорид бария. Бромид радия растворяется лучше хлорида. Растворимость нитрата радия падает с увеличением концентрации азотной кислоты. Нерастворимыми солями радия являются сульфат, хромат, карбонат, иодат, тетрафторобериллат и нитрат. Все они, за исключением карбоната, менее растворимы, чем соответствующие соли бария. Сульфат радия является самым малорастворимым из известных сульфатов[8].
Получение
Получить чистый радий в начале XX века стоило огромного труда. Мария Кюри трудилась 12 лет, чтобы получить крупинку чистого радия. Чтобы получить всего 1 г чистого радия, нужно было несколько вагонов урановой руды, 100 вагонов угля, 100 цистерн воды и 5 вагонов разных химических веществ. Поэтому на начало XX века в мире не было более дорогого металла. За 1 г радия нужно было заплатить больше 200 кг золота.
Обычно радий добывается из урановых руд. В рудах, достаточно старых для установления векового радиоактивного равновесия в ряду урана-238, на тонну урана приходится 333 миллиграмма радия-226.
Существует также способ добычи радия из радиоактивных природных вод, выщелачивающих радий из урансодержащих минералов. Содержание радия в них может доходить до 7,5×10−9 г/г. Так, на месте нынешнего поселка Водный Ухтинского района Республики Коми с 1931 по 1956 год действовало единственное в мире предприятие, где радий выделяли из подземных минерализованных вод Ухтинского месторождения, так называемый «Водный промысел»[9][10].
Из анализа документов, сохранившихся в архиве правопреемника этого завода (ОАО Ухтинский электрокерамический завод «Прогресс»), было подсчитано, что до закрытия на «Водном промысле» было выпущено примерно 271 г радия. В 1954 году мировой запас добытого радия оценивался в 2,5 кг. Таким образом, к началу 1950-х годов примерно каждый десятый грамм радия был получен на «Водном промысле»[9].
Нахождение в природе
Радий довольно редок. За прошедшее с момента его открытия время — более столетия — во всём мире удалось добыть всего только 1,5 кг чистого радия. Одна тонна урановой смолки, из которой супруги Кюри получили радий, содержит лишь около 0,1 г радия-226. Весь природный радий является радиогенным — возникает при распаде урана-238, урана-235 или тория-232; из четырёх найденных в природе наиболее распространённым и долгоживущим изотопом (период полураспада 1602 года) является радий-226, входящий в радиоактивный ряд урана-238. В равновесии отношение содержания урана-238 и радия-226 в руде равно отношению их периодов полураспада: (4,468⋅109 лет)/(1602 года)=2,789⋅106. Таким образом, на каждые 2,8 миллиона атомов урана в природе приходится лишь один атом радия; кларковое число радия (содержание в земной коре) составляет ~1 мкг/т.
Все природные изотопы радия сведены в таблицу:
Изотоп | Историческое название | Семейство | Период полураспада | Тип распада | Дочерний изотоп (историческое название) |
---|---|---|---|---|---|
Радий-223 | актиний Х (AcX) | ряд урана-235 | 11,435 дня | α | радон-219 (актинон, An) |
Радий-224 | торий Х (ThX) | ряд тория-232 | 3,66 дня | α | радон-220 (торон, Tn) |
Радий-226 | радий (Ra) | ряд урана-238 | 1602 года | α | радон-222 (радон, Rn) |
Радий-228 | мезоторий I (MsTh1) | ряд тория-232 | 5,75 года | β | актиний-228 (мезоторий II, MsTh2) |
Геохимия радия во многом определяется особенностями миграции и концентрации урана, а также химическими свойствами самого радия — активного щёлочноземельного металла. Среди процессов, способствующих концентрированию радия, следует указать в первую очередь на формирование на небольших глубинах геохимических барьеров, в которых концентрируется радий. Такими барьерами могут быть, например, сульфатные барьеры в зоне окисления. Поднимающиеся снизу хлоридные сероводородные радийсодержащие воды в зоне окисления становятся сульфатными, сульфат радия соосаждается с BaSO4 и CaSО4, где он становится практически нерастворимым постоянным источником радона. Из-за высокой миграционной способности урана и способности его к концентрированию формируются многие типы урановых рудообразований в гидротермах, углях, битумах, углистых сланцах, песчаниках, торфяниках, фосфоритах, бурых железняках, глинах с костными остатками рыб (литофациями). При сжигании углей зола и шлаки обогащаются 226Ra. Также содержание радия повышено в фосфатных породах.
В результате распада урана и тория и выщелачивания из вмещающих пород в нефти постоянно образуются радионуклиды радия. В статическом состоянии нефть находится в природных ловушках, обмена радием между нефтью и подпирающими её водами нет (кроме зоны контакта вода—нефть) и в результате имеется избыток радия в нефти. При разработке месторождения пластовые и закачиваемые воды интенсивно поступают в нефтяные пласты, поверхность раздела вода—нефть резко увеличивается, и в результате радий уходит в поток фильтрующихся вод. При повышенном содержании сульфат-ионов растворённые в воде радий и барий осаждаются в виде радиобарита Ва(Ra)SО4, который выпадает на поверхности труб, арматуры, резервуаров. Типичная объёмная активность поступающей на поверхность водонефтяной смеси по 226Rа и 228Rа может быть порядка 10 Бк/л (соответствует жидким радиоактивным отходам).
Основная масса радия находится в рассеянном состоянии в горных породах. Радий — химический аналог щелочных и щёлочноземельных породообразующих элементов, из которых состоят полевые шпаты, составляющие половину массы земной коры. Калиевые полевые шпаты — главные породообразующие минералы кислых магматических пород — гранитов, сиенитов, гранодиоритов и др. Известно, что граниты обладают природной радиоактивностью несколько выше фоновой из-за содержащегося в них урана. Хотя кларк урана не превышает 3 г/т, но в гранитах его содержание составляет уже 25 г/т. Но если гораздо более распространённый химический аналог радия барий входит в состав довольно редких калий-бариевых полевых шпатов (гиалофанов), а «чистый» бариевый полевой шпат, минерал цельзиан BaAl2Si2O8 очень редок, то накопления радия с образованием радиевых полевых шпатов и минералов вообще не происходит из-за короткого периода полураспада радия. Радий распадается на радон, уносящийся по порам и микротрещинкам и вымывающийся с грунтовыми водами. В природе иногда встречаются молодые радиевые минералы, не содержащие уран, например, радиобарит и радиокальцит, при кристаллизации которых из растворов, обогащённых радием (в непосредственной близости от легкорастворимых вторичных урановых минералов), радий сокристаллизуется с барием и кальцием благодаря изоморфизму.
Действие на организм
Радий, в зависимости от изотопного состава, обладает высокой и особо высокой радиотоксичностью[11]. В организме человека он ведёт себя подобно кальцию — около 80 % поступившего в организм радия накапливается в костной ткани. Большие концентрации радия вызывают остеопороз, самопроизвольные переломы костей и злокачественные опухоли костей (остеогенная саркома) и кроветворной ткани. Опасность представляет также радон — газообразный (относящийся к инертным газам) радиоактивный продукт распада радия, вызывающий рак лёгких, является ведущей причиной рака лёгких наряду с табакокурением.
Преждевременная смерть Марии Склодовской-Кюри произошла вследствие хронического отравления радием, так как в то время опасность облучения ещё не была осознана.
Изотопы
Известны 35 изотопов радия в диапазоне массовых чисел от 201 до 235[12]. Изотопы 223Ra, 224Ra, 226Ra, 228Ra встречаются в природе, являясь членами радиоактивных рядов урана-238, урана-235 и тория-232. Остальные изотопы могут быть получены искусственным путём. Большинство известных изотопов радия претерпевают альфа-распад в изотопы радона с массовым числом, на 4 меньшим, чем у материнского ядра. Нейтронодефицитные изотопы радия имеют также дополнительный канал бета-распада с эмиссией позитрона или захватом орбитального электрона; при этом образуется изотоп франция с тем же массовым числом, что и у материнского ядра. У нейтронно-избыточных изотопов радия (диапазон массовых чисел от 227 до 235) обнаружен только бета-минус-распад; он происходит с образованием ядер актиния с тем же массовым числом, что и у материнского ядра. Некоторые изотопы радия (221Ra, 222Ra, 223Ra, 224Ra, 226Ra) вблизи линии бета-стабильности обнаруживают, помимо альфа-распада, кластерную активность с испусканием ядра углерода-14 и образованием ядра свинца с массовым числом, на 14 меньшим, чем у материнского ядра (например, 222Ra → 208Pb+14C), хотя вероятность этого процесса составляет лишь 10−8…10−10% относительно альфа-распада. Радиоактивные свойства некоторых изотопов радия[12]:
Массовое число | Период полураспада | Тип распада |
---|---|---|
213 | 2,73(5) мин. | α (80±3%) |
219 | 10(3) мс | α |
220 | 17,9(14) мс | α |
221 | 28(2) с | α[13] |
222 | 33,6(4) с | α[14] |
223 (AcX) | 11,4377(22) суток | α[15] |
224 (ThX) | 3,6319(23) суток | α[16] |
225 | 14,9(2) суток | β− |
226 | 1600(7) лет | α[17] |
227 | 42,2(5) мин. | β− |
228 (MsTh1) | 5,75(3) года | β− |
230 | 93(2) мин. | β− |
Применение
В начале XX века радий считали полезным и включали в состав многих продуктов и бытовых предметов: хлеб, шоколад, питьевая вода, зубная паста, пудры и кремы для лица, средства для повышения тонуса и потенции[18][19].
В настоящее время радий иногда используют в компактных источниках нейтронов, для этого небольшие его количества сплавляются с бериллием. Под действием альфа-излучения (ядер гелия-4) из бериллия выбиваются нейтроны:
В медицине радий используют как источник радона для приготовления радоновых ванн[] (однако в настоящее время их полезность оспаривается[]). Кроме того, радий применяют для кратковременного облучения при лечении злокачественных заболеваний кожи, слизистой оболочки носа, мочеполового тракта[].
Однако в настоящее время существует множество более подходящих для медицинских целей радионуклидов с нужными свойствами, которые получают на ускорителях или в ядерных реакторах, например, 60Co (T1/2 = 5,3 года), 137Cs (T1/2 = 30,2 года), 182Ta (T1/2 = 115 сут), 192Ir (T1/2 = 74 сут), 198Au (T1/2 = 2,7 сут) и т. д., а также в генераторах изотопов (получение короткоживущих изотопов).
До 1970-х годов радий часто использовался для изготовления светящихся красок постоянного свечения (для разметки циферблатов авиационных и морских приборов, специальных часов и других приборов), однако сейчас его обычно заменяют менее опасными изотопами: тритием (T1/2 = 12,3 года) или 147Pm (T1/2 = 2,6 года). Иногда часы с радиевым светосоставом выпускались и в гражданском исполнении, в том числе наручные. Также радиевую светомассу в быту можно встретить в некоторых старых ёлочных игрушках[], тумблерах с подсветкой кончика рычажка, на шкалах некоторых старых радиоприёмников и прочее. Характерный признак светосостава постоянного действия советского производства — краска горчично-жёлтого цвета, хотя иногда цвет бывает и другим (белым, зеленоватым, тёмно-оранжевым и прочее). Опасность таких приборов состоит в том, что они не содержали предупреждающей маркировки, выявить их можно только дозиметрами. Люминофор под действие альфа-излучения деградирует, и краска зачастую перестаёт светиться, что, разумеется, не делает её менее опасной, так как радий никуда не исчезает. Деградировавшая краска также может осыпаться, и её частица, попавшая внутрь организма с едой или при вдохе, способна причинить большой вред за счёт альфа-излучения.
Отличие радиолюминесцентного состава от начавших применяться позднее фосфоресцентных составов — не угасающее по времени постоянное свечение в темноте.
Примечания
- ↑ 1 2 3 4 5 6 7 8 9 10 11 Бердоносов С. С. Радий // Химическая энциклопедия : в 5 т. / Гл. ред. Н. С. Зефиров. — М.: Большая Российская энциклопедия, 1995. — Т. 4: Полимерные — Трипсин. — С. 153—154. — 639 с. — 40 000 экз. — ISBN 5-85270-039-8.
- ↑ WebElements Periodic Table of the Elements | Radium | crystal structures . Дата обращения: 10 августа 2010. Архивировано 25 июля 2010 года.
- ↑ Мещеряков М. Г., Перфилов Н. А. Памяти Льва Владимировича Мысовского (К семидесятипятилетию со дня рождения) // Успехи физических наук. — 1963. — Т. 81. — С. 575—577. — doi:10.3367/UFNr.0081.196311g.0575. Архивировано 10 августа 2017 года.
- ↑ Claudia Clark. Radium Poisoning Revealed: A Case Study in the History of Industrial Health Reform // Humboldt Journal of Social Relations. — 1991. — Т. 16, вып. 2. — С. 111–143. — ISSN 0160-4341. Архивировано 10 октября 2023 года.
- ↑ Weigel F., Trinkl A. Zur Kristallchemie des Radiums (нем.) // Radiochim. Acta. — 1968. — Bd. 10, H. 1–2. — S. 78. — doi:10.1524/ract.1968.10.12.78.
- ↑ "Crystal Structures of the Chemical Elements at 1 bar" Архивировано 26 августа 2014 года.. uni-bielefeld.de.
- ↑ Радий // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- ↑ Kirby et al., pp. 4—9
- ↑ 1 2 Кичигин А. И., Таскаев А. И. «Водный промысел»: история производства радия в Республике Коми (1931—1956 гг.) // Вопросы истории естествознания и техники. — 2004. — № 4. — С. 3—30. Архивировано 5 марта 2016 года.
- ↑ Иевлев А. А. Водный промысел в Коми АССР — предтеча атомной промышленности Советского Союза. // Военно-исторический журнал. — 2011. — № 2. — С.45—47.
- ↑ Баженов В. А., Булдаков Л. А., Василенко И. Я. и др. Вредные химические вещества. Радиоактивные вещества : Справ. изд. / Под. ред. В. А. Филова и др.. — Л. : Химия, 1990. — С. 35, 106. — ISBN 5-7245-0216-X.
- ↑ 1 2 Audi G., Kondev F. G., Wang M., Huang W. J., Naimi S. The Nubase2016 evaluation of nuclear properties (англ.) // Chinese Physics C. — 2017. — Vol. 41, iss. 3. — P. 030001-1—030001-138. — doi:10.1088/1674-1137/41/3/030001. — .
- ↑ Обнаружен также очень редкий кластерный распад радия-221 с вылетом ядра углерода-14 (коэффициент ветвления (1,2 ± 0,9)·10−10%).
- ↑ Обнаружен также очень редкий кластерный распад радия-222 с вылетом ядра углерода-14 (коэффициент ветвления (3,0 ± 1,0)·10−8%).
- ↑ Обнаружен также очень редкий кластерный распад радия-223 с вылетом ядра углерода-14 (коэффициент ветвления (8,9 ± 0,4)·10−8%).
- ↑ Обнаружен также очень редкий кластерный распад радия-224 с вылетом ядра углерода-14 (коэффициент ветвления (4,0 ± 1,2)·10−9%).
- ↑ Обнаружен также очень редкий кластерный распад радия-226 с вылетом ядра углерода-14 (коэффициент ветвления (2,6 ± 0,6)·10−9%).
- ↑ Radium and Beauty // New York Tribune. — 1918. — 1 ноября. — С. 12. Архивировано 4 апреля 2014 года.
- ↑ Thomas Davie. 10 Radioactive Products That People Actually Used . Environmental Graffiti. Дата обращения: 17 апреля 2011. Архивировано из оригинала 4 апреля 2011 года.
Литература
- Погодин С. А., Либман Э. П. Как добыли советский радий / Под ред. чл.-корр. АН СССР В. М. Вдовенко. — М.: Атомиздат, 1971. — 232 с. — (Научно-популярная библиотека Атомиздата). — 25 000 экз. (обл.)
- Погодин С. А., Либман Э. П. Как добыли советский радий / Под ред. чл.-корр. АН СССР В. М. Вдовенко. — 2-е изд., испр. и доп. — М.: Атомиздат, 1977. — 248 с.
- Венецкий С.И. "В грамм добыча, в год труды" (Радий) // О редких и рассеянных (Рассказы о металлах) . — Москва: Металлургия, 1980. — 184 с. — 200 000 экз.