Наибольшим общим делителем (НОД) для двух целых чисел и называется наибольший из их общих делителей. Пример: для чисел 54 и 24 наибольший общий делитель равен 6.
Составно́е число́ — натуральное число, имеющее делители, отличные от единицы и самого себя. Каждое составное число является произведением двух или более натуральных чисел, бо́льших единицы. Все натуральные числа делятся на три непересекающиеся категории: простые, составные и единица.
Числа Ферма́ — числа вида , где .
Гиперболические числа, или двойны́е чи́сла, паракомпле́ксные чи́сла, расщепля́емые компле́ксные чи́сла, компле́ксные чи́сла гиперболи́ческого ти́па, контркомпле́ксные чи́сла — гиперкомплексные числа вида «a + j · b», где a и b — вещественные числа и причём j ≠ ±1.
Умноже́ние — одна из основных математических операций над двумя аргументами, которые называются множителями или сомножителями. Результат умножения называется их произведением.
Га́уссовы це́лые чи́сла — это комплексные числа, у которых как вещественная, так и мнимая часть — целые числа.
-метод Полларда — один из методов факторизации целых чисел.
Метод факторизации Ферма — алгоритм факторизации нечётного целого числа , предложенный Пьером Ферма (1601—1665) в 1643 году.
Атака на основе подобранного шифротекста — криптографическая атака, при которой криптоаналитик собирает информацию о шифре путём подбора зашифрованного текста и получения его расшифровки при неизвестном ключе. Как правило, криптоаналитик может воспользоваться устройством расшифрования один или несколько раз для получения шифротекста в расшифрованном виде. Используя полученные данные, он может попытаться восстановить секретный ключ для расшифровки. Существуют шифры, для которых атаки данного типа могут оказаться успешными. К их числу относятся: Схема Эль-Гамаля; RSA, используемый в протоколе SSL; NTRU. Для защиты используют шифры RSA-OAEP и Крамера-Шоупа.
abc-гипотеза — утверждение в теории чисел, сформулированное независимо друг от друга математиками Дэвидом Массером в 1985 году и Джозефом Эстерле в 1988 году.
Задача о 1-центре или минимаксная задача размещения объектов — это классическая задача комбинаторной оптимизации, задача в дисциплине «исследование операций», — частный случай задачи о размещении объектов. В наиболее общем случае формулируется следующим образом:
- Задано множество местоположений потребителей, пространство возможных точек размещения объектов и функция стоимости перевозки от любой точки возможного размещения до точки потребления
- Нужно найти оптимальную точку расположения объектов, минимизирующее максимальную стоимость доставки от объекта до потребителя.
Теорема Мэйсона — Стотерса — аналог abc-гипотезы для многочленов. Названа в честь Стотерса, который опубликовал её в 1981 году, и Мейсона, который вновь открыл её после этого.
Ле́мма Га́усса — утверждение про свойства многочленов над факториальными кольцами, которое впервые было доказано для многочленов над кольцом целых чисел. Широко применяется в теории колец и полей, в частности, при доказательстве факториальности кольца многочленов над факториальным кольцом и теоремы Люрота.