Ква́нтовая фи́зика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения. Основные законы квантовой физики изучаются в рамках квантовой механики и квантовой теории поля, применяются в других разделах физики и других наук.
Квазичасти́ца — понятие в квантовой механике, введение которого позволяет существенно упростить описание сложных квантовых систем со взаимодействием, таких, как твёрдые тела и квантовые жидкости.
Фермио́н — частица или квазичастица с полуцелым значением спина. Все частицы можно разделить на две группы в зависимости от значения их спина: частицы с целым спином относятся к бозонам, с полуцелым — к фермионам.
Элемента́рный электри́ческий заря́д — фундаментальная физическая постоянная, минимальная порция (квант) электрического заряда, наблюдающегося в природе у свободных долгоживущих частиц. Согласно изменениям определений основных единиц СИ равен точно 1,602 176 634⋅10−19 Кл в Международной системе единиц (СИ). Тесно связан с постоянной тонкой структуры, описывающей электромагнитное взаимодействие.
Сверхтеку́честь — способность вещества в особом состоянии, возникающем при температурах, близких к абсолютному нулю, протекать через узкие щели и капилляры без трения. До недавнего времени сверхтекучесть была известна только у жидкого гелия, однако в 2000-е годы сверхтекучесть была обнаружена и в других системах: в разрежённых атомных бозе-конденсатах, твёрдом гелии.
Ды́рка — квазичастица, носитель положительного заряда, равного элементарному заряду, в полупроводниках. Представление о квазичастице с положительным зарядом и положительной эффективной массой есть не что иное, как терминологическая замена представлению о реальной частице с отрицательным зарядом и отрицательной эффективной массой.
Эксито́н — квазичастица, представляющая собой электронное возбуждение в диэлектрике, полупроводнике или металле, мигрирующее по кристаллу и не связанное с переносом электрического заряда и массы. Понятие об экситоне и сам термин введены советским физиком Я. И. Френкелем в 1931 году, им же разработана теория экситонов, а экспериментально спектр экситона впервые наблюдался в 1951 году советскими физиками Е. Ф. Гроссом и Н. А. Каррыевым. Представляет собой связанное состояние электрона и дырки. При этом его следует считать самостоятельной элементарной частицей в случаях, когда энергия взаимодействия электрона и дырки имеет тот же порядок, что и энергия их движения, а энергия взаимодействия между двумя экситонами мала по сравнению с энергией каждого из них. Экситон можно считать элементарной квазичастицей в тех явлениях, в которых он выступает как целое образование, не подвергающееся воздействиям, способным его разрушить.
Гиперзвук — упругие волны с частотами от 109 Гц. По физической природе гиперзвук не отличается от звуковых и ультразвуковых волн. Гиперзвук часто представляют как поток квазичастиц — фононов.
Магно́н — квазичастица, соответствующая элементарному возбуждению системы взаимодействующих спинов. В кристаллах с несколькими магнитными подрешётками могут существовать несколько сортов магнонов, имеющих различные энергетические спектры. Магноны подчиняются статистике Бозе — Эйнштейна. Магноны взаимодействуют друг с другом и с другими квазичастицами. Существование магнонов подтверждается экспериментами по рассеянию нейтронов, электронов и света, которое сопровождается рождением или уничтожением магнона.
Ви́гнеровский кристалл — упорядоченное состояние электронов, находящихся в поле положительного, равномерно распределённого заряда.
Носи́тели заря́да — общее название подвижных частиц или квазичастиц, которые несут электрический заряд и способны обеспечивать протекание электрического тока.
Это список частиц в физике элементарных частиц, включающий не только открытые, но и гипотетические элементарные частицы, а также составные частицы, состоящие из элементарных частиц.
Поляро́н — квазичастица в кристалле, состоящая из электрона и сопровождающего его поля упругой деформации (поляризации) решётки. Медленно движущийся электрон в диэлектрическом кристалле, взаимодействующий с ионами решётки через дальнодействующие силы, будет постоянно окружён областью решёточной поляризации и деформации, вызванной движением электрона. Двигаясь через кристалл, электрон проводит решёточную деформацию, потому можно говорить о наличии облака фононов, сопровождающего электрон. Характер поляризации и энергия связи электрона с решёткой отличаются в металлах, полупроводниках и ионных кристаллах. Это связано с типом связи и скоростью движения электронов в решётке.
Электроны проводимости — электроны, способные переносить электрический заряд в кристалле, отрицательно заряженные квазичастицы в металлах и полупроводниках, электронные состояния в зоне проводимости. В частности, отличается от обычного электрона эффективной массой, а также зависимостью эффективной массы от направления приложенной к электрону проводимости внешних сил.
Жидкость Томонаги — Латтинжера, или просто жидкость Латтинжера, — это теоретическая модель, описывающая взаимодействие электронов в одномерном проводнике. Такая модель необходима, поскольку обычно используемая модель Ферми-жидкости теряет применимость в одномерном случае.
Неупорядоченная система — конденсированная макроскопическая система, в которой отсутствует дальний порядок в расположении частиц. К неупорядоченным системам относятся, в частности, жидкости, аморфные и стекловидные вещества. Несмотря на отсутствие дальнего порядка, ближний порядок в таких системах может сохраняться.
Волна зарядовой плотности (ВЗП) — это периодическое изменение плотности квантовой электронной жидкости и ионов остова металла, часто наблюдаемых в слоистых или линейных кристаллах. Электроны внутри ВЗП формируют стоячую волну и иногда могут вызывать электрический ток. Электроны в такой ВЗП, наподобие электронов в сверхпроводниках, могут распространяться в одномерной среде с высокой степенью корреляции. Однако, в отличие от сверхпроводника, электрический ток ВЗП часто течёт скачками, как вода, капающая из крана, из-за своих электростатических свойств. В ВЗП комбинированные эффекты закрепления и электростатических взаимодействий, вероятно, играют критическую роль в скачкообразном поведении тока ВЗП, как обсуждается в разделах ниже.
Взаимодействие между магнитными моментами парамагнитных частиц в веществе или ядер и упругими колебаниями окружающей их среды (фононами). Различают электронное спин-фононное взаимодействие и ядерное спин-фононное взаимодействие.
Продо́льная релакса́ция (Спин-решёточная релаксация) — релаксационный процесс (эффект) ядерного магнитного резонанса (ЯМР) установления равновесия между спиновой системой и тепловыми колебаниями решётки, описываемый уравнением: dMz/dt=(M0 — Mz)/T1. Где: T1 — время, требуемое для создания равновесной намагниченности (M0) после включения внешнего магнитного поля (время продольной, спин-решёточной релаксации), которое характеризует изменение со временем продольной составляющей компоненты намагниченности; величина 1/T1 — константа скорости перехода возмущённой системы в равновесное состояние; Mz — величина новой равновесной намагниченности, а, то есть, функция времени продольной релаксации. Изменение z-компоненты макроскопической намагниченности подчиняется данному дифференциальному уравнению первого порядка. Этот процесс играет важную роль при наблюдении некоторых резонансных явлений, при которых макроскопическая намагниченность не поворачивается на 180° в отрицательном направлении оси z при наложении полей с малыми амплитудами — B1, а только отклоняется на малый угол α. Следовательно, даже в момент резонанса намагниченность по оси z сохраняется, поскольку система стремится сохранить нормальное больцмановское распределение путём релаксации. Также этот процесс может быть записан обратными спиновыми температурами, учитывая, что она пропорциональна ядерной намагниченности системы: dαI/dt =αL — αI/T1, где: αI — обратная спиновая температура, αL=ħ/(kБTL) — обратная температура решётки, kБ — постоянная Больцмана, TL — температура решётки, T1 — время спин-решёточной релаксации; и данное уравнение является обратным уравнению, описывающему продольную релаксацию.