Математи́ческое ожида́ние — понятие в теории вероятностей, означающее среднее значение случайной величины. В случае непрерывной случайной величины подразумевается взвешивание по плотности распределения. Математическое ожидание случайного вектора равно вектору, компоненты которого равны математическим ожиданиям компонентов случайного вектора.

Фу́нкция распределе́ния в теории вероятностей — функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее х, где х — произвольное действительное число. При соблюдении известных условий полностью определяет случайную величину.
Непрерывная функция — функция, которая меняется без мгновенных «скачков», то есть такая, малые изменения аргумента которой приводят к малым изменениям значения функции.
Распределение вероятностей — это закон, описывающий область значений случайной величины и вероятности их исхода (появления).
Теоре́ма Вейерштра́сса — теорема математического анализа и общей топологии, которая гласит, что функция, непрерывная на компакте, ограничена на нём и достигает своих точных верхней и нижней граней.
В математическом анализе вариацией функции называется числовая характеристика функции одного действительного переменного, связанная с её дифференциальными свойствами. Для функции из отрезка на вещественной прямой в
является обобщением понятия длины кривой, задаваемой в
этой функцией.
Теоре́ма Лебе́га о мажори́руемой сходи́мости в функциональном анализе, теории вероятностей и смежных дисциплинах — это теорема, утверждающая, что если сходящаяся почти всюду последовательность измеримых функций может быть ограничена по модулю сверху интегрируемой функцией, то все члены последовательности, а также предельная функция тоже интегрируемы. Более того, интеграл последовательности сходится к интегралу её предела.

Непреры́вное равноме́рное распределе́ние в теории вероятностей — распределение случайной вещественной величины, принимающей значения, принадлежащие некоторому промежутку конечной длины, характеризующееся тем, что плотность вероятности на этом промежутке почти всюду постоянна.

Центра́льные преде́льные теоре́мы (ЦПТ) — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы, имеет распределение, близкое к нормальному.
Характеристи́ческая фу́нкция случа́йной величины́ — один из способов задания распределения. Характеристические функции могут быть удобнее в тех случаях, когда, например, плотность или функция распределения имеют очень сложный вид. Также характеристические функции являются удобным инструментом для изучения вопросов слабой сходимости. В теорию характеристических функций внесли большой вклад Ю. В. Линник, И. В. Островский, К. Р. Рао, Б. Рамачандран.
Пло́тность вероя́тности — один из способов задания распределения случайной величины. Во многих практических приложениях понятия «плотность вероятности» и «плотность (распределения) случайной величины» или «функция распределения вероятностей» фактически синонимизируются и под ними подразумевается вещественная функция, характеризующая сравнительную вероятность реализации тех или иных значений случайной переменной (переменных).

Закон больших чисел (ЗБЧ) в теории вероятностей — принцип, описывающий результат выполнения одного и того же эксперимента много раз. Согласно закону, среднее значение конечной выборки из фиксированного распределения близко к математическому ожиданию этого распределения.
Выборочная (эмпири́ческая) фу́нкция распределе́ния в математической статистике — это приближение теоретической функции распределения, построенное с помощью выборки из него.
Теорема Гливе́нко — Канте́лли в математической статистике уточняет результат о сходимости выборочной функции распределения к её теоретическому аналогу.
Теоре́ма Колмого́рова в математической статистике уточняет скорость сходимости выборочной функции распределения к её теоретическому аналогу.
Процесс Пуассона, поток Пуассона, пуассоновский процесс — ординарный поток однородных событий, для которого число событий в интервале А не зависит от чисел событий в любых интервалах, не пересекающихся с А, и подчиняется распределению Пуассона. В теории случайных процессов описывает количество наступивших случайных событий, происходящих с постоянной интенсивностью.

Формула Ньютона — Лейбница, или основная формула анализа, или формула Барроу даёт соотношение между двумя операциями: взятием интеграла Римана и вычислением первообразной.
Критерий согласия Колмогорова или Критерий согласия Колмогорова-Смирнова — статистический критерий, использующийся для определения того, подчиняются ли два эмпирических распределения одному закону, либо того, подчиняется ли полученное распределение предполагаемой модели. Носит имена математиков Андрея Николаевича Колмогорова и Николая Васильевича Смирнова.