
Преобразование Бокса — Мюллера — метод моделирования стандартных нормально распределённых случайных величин. Имеет два варианта. Метод является точным, в отличие, например, от методов, основывающихся на центральной предельной теореме.
Моме́нт случа́йной величины́ — числовая характеристика распределения данной случайной величины.
Среднеквадрати́ческое отклонение — наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания. Обычно означает квадратный корень из дисперсии случайной величины, но иногда может означать тот или иной вариант оценки этого значения.

Центра́льные преде́льные теоре́мы (ЦПТ) — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы, имеет распределение, близкое к нормальному.
Пло́тность вероя́тности — один из способов задания распределения случайной величины. Во многих практических приложениях понятия «плотность вероятности» и «плотность (распределения) случайной величины» или «функция распределения вероятностей» фактически синонимизируются и под ними подразумевается вещественная функция, характеризующая сравнительную вероятность реализации тех или иных значений случайной переменной (переменных).

Коэффицие́нт эксце́сса в теории вероятностей — мера остроты пика распределения случайной величины.

Логнорма́льное распределе́ние (логарифмически-нормальное) в теории вероятностей — это двухпараметрическое семейство абсолютно непрерывных распределений. Если случайная величина имеет логнормальное распределение, то её логарифм имеет нормальное распределение.

Распределе́ние Стью́дента в теории вероятностей — это однопараметрическое семейство абсолютно непрерывных распределений. Уильям Сили Госсет первым опубликовал работы, посвящённые этому распределению, под псевдонимом «Стьюдент».
Ковариацио́нная ма́трица в теории вероятностей — это матрица, составленная из попарных ковариаций элементов одного или двух случайных векторов.

Многоме́рное норма́льное распределе́ние в теории вероятностей — это обобщение одномерного нормального распределения. Случайный вектор, имеющий многомерное нормальное распределение, называется гауссовским вектором.
Га́уссовский проце́сс в теории случайных процессов — это вещественный процесс, чьи конечномерные распределения гауссовские.
Доверительный интервал для математического ожидания — интервал, который с известной вероятностью содержит математическое ожидание генеральной совокупности.
Стандартизированная оценка - это мера относительного разброса наблюдаемого или измеренного значения, которая показывает, сколько стандартных отклонений составляет его разброс относительного среднего значения. Это безразмерный статистический показатель, используемый для сравнения значений разной размерности или шкалой измерений.
Эллипсоидальные координаты — трёхмерная ортогональная система координат
, являющаяся обобщением двумерной эллиптической системы координат. Данная система координат основана на использовании софокусных поверхностей второго порядка.
K-распределение — в теории вероятности и статистике семейство трёхпараметрических непрерывных вероятностных распределений. Возникает при суперпозиции двух гамма-распределений. В каждом случае производится репараметризация гамма-распределения, и параметрами распределения являются:
- среднее значение распределения;
- обычные параметры формы.

Хи-распределение — непрерывное вероятностное распределение случайной величины, являющейся квадратным корнем суммы квадратов независимых нормальных случайных величин. Оно связано с хи-квадрат распределением и является распределением квадратного корня случайной величины, распределённой по закону
.
t-критерий Уэлча — тест, основанный на распределении Стьюдента и предназначенный для проверки статистической гипотезы о равенстве математических ожиданий случайных величин, имеющих необязательно равные известные дисперсии. Является модификацией t-критерия Стьюдента. Назван в честь британского статистика Бернарда Льюиса Уэлча.