Ги́льбертово простра́нство — обобщение евклидова пространства, допускающее бесконечную размерность и полное по метрике, порождённой скалярным произведением. Названо в честь Давида Гильберта.
Метри́ческое простра́нство — множество вместе со способом измерения расстояния между его элементами. Является центральным понятием геометрии и топологии.
Нормированное пространство — векторное пространство с заданной на нём нормой; один из основных объектов изучения функционального анализа.
Метрика Хаусдорфа есть естественная метрика, определённая на множестве всех непустых компактных подмножеств метрического пространства. Таким образом, она превращает множество всех непустых компактных подмножеств метрического пространства в метрическое пространство.
Норма — функционал, заданный на векторном пространстве и обобщающий понятие длины вектора или абсолютного значения числа.
Преобразование Радона — интегральное преобразование функции многих переменных, родственное преобразованию Фурье. Впервые введено в работе австрийского математика Иоганна Радона 1917-го года.
Ба́зис — упорядоченный набор векторов в векторном пространстве или модуле, такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора. Векторы базиса называются базисными векторами.
H на бесконечности или — метод теории управления для синтеза оптимальных регуляторов. Метод является оптимизационным, имеющим дело со строгим математическим описанием предполагаемого поведения замкнутой системы и её устойчивости. Метод примечателен своей строгой математической базой, оптимизационным характером и применимостью как к классическому, так и робастному управлению.
Пло́скость — одно из фундаментальных понятий в геометрии. При систематическом изложении геометрии понятие плоскости обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии. В тесной связи с плоскостью принято рассматривать принадлежащие ей точки и прямые; они также, как правило, вводятся как неопределяемые понятия, свойства которых задаются аксиоматически.
Пространство непрерывных функций — линейное нормированное пространство, элементами которого являются непрерывные на отрезке функции . Норма в этом пространстве определяется следующим образом:
Антидеси́ттеровское простра́нство — псевдориманово многообразие постоянной отрицательной кривизны. Его можно считать псевдоримановым аналогом -мерного гиперболического пространства. Названо как противопоставление пространству де Ситтера, обозначается обычно .
В релятивистской физике координатами Риндлера называется координатная система, представляющая часть плоского пространства-времени, также называемого пространством Минковского. Координаты Риндлера были введены Вольфгангом Риндлером для описания пространства-времени равномерно ускоренного наблюдателя.
Ультраметрическое пространство — особый случай метрического пространства, в котором метрика удовлетворяет усиленному неравенству треугольника:
Коне́чноме́рное простра́нство — это векторное пространство, в котором имеется конечный базис — порождающая (полная) линейно независимая система векторов. Другими словами, в таком пространстве существует конечная линейно независимая система векторов, линейной комбинацией которых можно представить любой вектор данного пространства.
Многокритериальная оптимизация, или программирование — это процесс одновременной оптимизации двух или более конфликтующих целевых функций в заданной области определения.
Четвёртая проблема Гильберта в списке проблем Гильберта касается базовой системы аксиом геометрии. Проблема состоит в том, чтобы
«Определить все с точностью до изоморфизма реализации систем аксиом классических геометрий, если в них опустить аксиомы конгруэнтности, содержащие понятия угла, и пополнить эти системы аксиомой неравенства треугольника».
Расстояние городских кварталов — метрика, введённая Германом Минковским. Согласно этой метрике, расстояние между двумя точками равно сумме модулей разностей их координат.
Расстояние Минковского — параметрическая метрика на евклидовом пространстве, которую можно рассматривать как обобщение евклидова расстояния и расстояния городских кварталов. Названа в честь немецкого математика Германа Минковского, впервые систематически изучившего данное семейство функций расстояния.
Статистическая теория обучения — это модель для машинного обучения на основе статистики и функционального анализа. Статистическая теория обучения имеет дело с задачами нахождения функции предсказывания, основанной на данных. Статистическая теория обучения привела к успешным приложениям в таких областях, как компьютерное зрение, распознавание речи и биоинформатика.