Органи́зм — живое тело, обладающее совокупностью свойств, отличающих его от неживой материи, в том числе обменом веществ, самоподдерживанием своего строения и организации, способностью воспроизводить их при размножении, сохраняя наследственные признаки. Термин организм введён Аристотелем. Он выявил, что любое живое существо характеризуется чёткой и строгой организацией, в отличие от неживого.
Генетическая инжене́рия — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами, введения их в другие организмы и выращивания искусственных организмов после удаления выбранных генов из ДНК. Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, генетика, микробиология, вирусология.
Биотехноло́гия — дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии.
Трансге́нный органи́зм — живой организм, в геном которого искусственно введён ген, который не может быть приобретён при естественном скрещивании.
Циклический аденозинмонофосфат — органическое соединение, производное АТФ, выполняющее в организме роль вторичного посредника, использующегося для внутриклеточного распространения сигналов некоторых гормонов, которые не могут проходить через клеточную мембрану.
Наноархео́ты — тип архей, выделенный в 2002 году. Некоторое время единственным видом, входящим в состав этого типа, был Nanoarchaeum equitans. Его представители могут развиваться только в сокультуре с хемолитоавтотрофными археями одного из видов рода Ignicoccus, что является уникальным явлением для архей. Обычно отношения двух видов архей рассматривают как симбиотические, однако существуют свидетельства и в пользу паразитизма Nanoarchaeum на Ignicoccus. В 2013 году появилось сообщение об обнаружении второго вида наноархеот — Nanobsidianus stetteri.
Маркировка (маркирование), или мечение — искусственное нанесение меток на группы клеток, отдельные клетки или внутриклеточные структуры для отслеживания в дальнейшем.
Теломераза — фермент, добавляющий особые повторяющиеся последовательности нуклеотидов ДНК к 3'-концу цепи ДНК на участках теломер, которые располагаются на концах хромосом в эукариотических клетках. Теломеры содержат уплотнённую ДНК и стабилизируют хромосомы. При каждом делении клетки теломерные участки укорачиваются. Существование механизма, компенсирующего укорочение теломер (теломеразы), было предсказано в 1973 году А. М. Оловниковым.
Полимеразная цепная реакция в реальном времени — лабораторный метод, основанный на методе полимеразной цепной реакции, позволяющий определять не только присутствие целевой нуклеотидной последовательности в образце, но и измерять количество её копий. Количество амплифицированной ДНК измеряется после каждого цикла амплификации с помощью флуоресцентных меток: зондов или интеркаляторов. Оценка может быть количественной и относительной.
Зелёный флуоресцентный белок (ЗФБ) — белок, выделенный из медузы Aequorea victoria, который флуоресцирует в зелёном диапазоне при освещении его светом от синего до ультрафиолетового диапазона. В настоящее время ген белка широко используется в качестве светящейся метки в клеточной и молекулярной биологии для изучения экспрессии клеточных белков. Разработаны модификации белка для применения в биосенсорах. Созданы цельные светящиеся животные, у которых ЗФБ внесён в геном и передаётся по наследству. Созданы также ЗФБ-содержащие вирусные векторы, позволяющие локально вводить желаемый ген в организм животного и прослеживать экспрессируемый белок. В 2008 году Осаму Симомура, Мартин Чалфи и Роджер Тсьен получили Нобелевскую премию по химии «за открытие и разработку зелёного флуоресцентного белка».
Экспрессия генов — процесс, в ходе которого наследственная информация от гена преобразуется в функциональный продукт — РНК или белок. Некоторые этапы экспрессии генов могут регулироваться: это транскрипция, трансляция, сплайсинг РНК и стадия посттрансляционных модификаций белков. Процесс активации экспрессии генов короткими двухцепочечными РНК называется активацией РНК.
Лактозный оперон — полицистронный оперон бактерий, кодирующий гены метаболизма лактозы.
Провирус — геном вируса, встроенный в ДНК клетки хозяина. Процесс встраивания провируса в геном называют интеграцией, эта реакция катализируется ферментом интегразой.
Люцифера́за — общий термин для класса окислительных ферментов, катализирующих реакцию, сопровождающуюся испусканием света, биолюминесценцией. Наиболее широко известна люцифераза светлячков, в частности, светлячка Photinus pyralis. В биологии широко используется в качестве лабораторного реагента люцифераза как правило из этого вида. Название фермента, также как и его субстрата люциферина, происходит от слова Люцифер («светоносец»).
X-gal — органическое соединение, состоящее из галактозы, соединенной с индолом. Очень широко используется в качестве субстрата для бета-галактозидаз в генетической инженерии и молекулярной биологии.
Генная пушка — устройство, разработанное для трансформации растений. Генная пушка доставляет частицы тяжелых металлов, покрытые плазмидной ДНК. Данную технологию часто называют биобаллистикой и биолистикой.
Флуоресценция нашла широкое применение в различных прикладных биологических и биомедицинских исследованиях. Это физическое явление, суть которого заключается в кратковременном поглощении кванта света флюорофором с последующей быстрой эмиссией другого кванта, который имеет свойства, отличные от исходного. Много направлений в биофизике, молекулярной и клеточной биологии возникли и развиваются именно благодаря внедрению новых методов, базирующихся на флуоресценции. Стоит отметить несколько примеров.
Брэйнбоу – это метод нейровизуализации, в основе которого лежит использование флуоресцентных белков. Будучи внедрённым в геном животного, зелёный флуоресцентный белок и его генетически модифицированные варианты окрашивают нервные клетки в разные цвета, что позволяет значительно более точно локализовать архитектуру нейронных связей отдельных клеток. Данный метод позволяет картографировать одновременно до 100 нервных клеток.
В связи с накоплением огромного количества информации о последовательностях генов, в настоящее время, для выявления функций генов, часто используют методы обратной генетики. Исследователи манипулируют последовательностями генов, изменяя или выключая тот или иной ген, и анализируют, к каким изменениям это приводит. Это путь обратной генетики: от гена к признаку/фенотипу. Прямая и обратная генетика – не взаимоисключающие подходы, а дополняющие друг друга в изучении функции гена.