О́птика — раздел физики, изучающий поведение и свойства света, в том числе его взаимодействие с веществом и создание инструментов, которые его используют или детектируют. Оптика обычно описывает поведение видимого, ультрафиолетового и инфракрасного излучения. Поскольку свет представляет собой электромагнитную волну, другие формы электромагнитного излучения, такие как рентгеновские лучи, микроволны и радиоволны, обладают аналогичными свойствами.
Фото́н — фундаментальная частица, квант электромагнитного излучения в виде поперечных электромагнитных волн и переносчик электромагнитного взаимодействия. Это безмассовая частица, способная существовать, только двигаясь со скоростью света. Электрический заряд фотона равен нулю. Фотон может находиться только в двух спиновых состояниях с проекцией спина на направление движения (спиральностью) ±1. В физике фотоны обозначаются буквой γ.
Инве́рсия относительно окружности — преобразование евклидовой плоскости, переводящее обобщённые окружности в обобщённые окружности, при котором одна из окружностей поточечно переводится в себя.
Волна́ — изменение некоторой совокупности физических величин, которое способно перемещаться, удаляясь от места их возникновения, или колебаться внутри ограниченных областей пространства.
Просветле́ние о́птики — технология обработки поверхности линз, призм и других оптических деталей для снижения отражения света от оптических поверхностей, граничащих с воздухом. Это позволяет увеличить светопропускание оптической системы и повысить контрастность изображения за счёт снижения мешающих паразитных отражений в оптической системе.
Дисторсия — аберрация оптических систем, при которой коэффициент линейного увеличения изменяется по мере удаления отображаемых предметов от оптической оси. При этом нарушается геометрическое подобие между объектом и его изображением. Дисторсия неприемлема в оптике, предназначенной для фотограмметрической аэрофотосъёмки и изготовления фотошаблонов. Объектив с исправленной дисторсией называется ортоскопическим, поскольку удовлетворяет требованиям ортоскопичности.
Ли́нза — деталь из прозрачного однородного материала, имеющая две преломляющие полированные поверхности, например, обе сферические или же одну плоскую, а другую — сферическую. В настоящее время всё чаще применяются и «асферические линзы», форма поверхности которых отличается от сферы. В качестве материала линз обычно используются оптические материалы, такие как стекло, оптическое стекло, кристаллы, оптически прозрачные пластмассы и другие материалы. Существуют и инфракрасные линзы, изготовленные из материала, прозрачного для инфракрасного излучения.
Разреше́ние — способность оптического прибора воспроизводить изображение близко расположенных объектов.
Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму.
Нелинейная оптика — раздел оптики, в котором исследуется совокупность оптических явлений, наблюдающихся при взаимодействии световых полей с веществом, у которого имеется нелинейная реакция вектора поляризованности на вектор напряжённости электрического поля световой волны. В большинстве веществ данная нелинейность наблюдается лишь при очень высоких интенсивностях света, достигаемых при помощи лазеров. Принято считать как взаимодействие, так и сам процесс линейными, если его вероятность пропорциональна первой степени интенсивности излучения. Если эта степень больше единицы, то как взаимодействие, так и процесс называются нелинейными. Таким образом возникли термины линейная и нелинейная оптика. В нелинейной оптике принцип суперпозиции не выполняется.
Самофокусировка света — один из эффектов самовоздействия света, состоящий в концентрации энергии светового пучка в нелинейной среде, показатель преломления которой возрастает при увеличении интенсивности света. Явление самофокусировки было предсказано советским физиком-теоретиком Г. А. Аскарьяном в 1961 году и впервые наблюдалось Н. Ф. Пилипецким и А. Р. Рустамовым в 1965 году. Основы математически строгого описания теории были заложены В. И. Талановым.
Асфери́ческими называют линзы, одна или обе поверхности которых не являются сферическими.
Эффе́кт Ке́рра, или квадрати́чный электроопти́ческий эффект, — явление изменения значения показателя преломления оптического материала пропорционально квадрату напряжённости приложенного электрического поля. Отличается от эффекта Поккельса тем, что изменение показателя прямо пропорционально квадрату электрического поля, в то время как последний изменяется линейно.
Двойно́е лучепреломле́ние или двулучепреломле́ние — оптическое свойство анизотропных материалов, в которых показатель преломления зависит от направления распространения света. В таких материалах может наблюдаться эффект расщепления луча света на две составляющие, когда при попадании в материал образуется не один, а два преломленных луча с разным направлением и поляризацией.
Отраже́ние — физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными свойствами, в котором волновой фронт возвращается в среду, из которой он пришёл. Одновременно с отражением волн на границе раздела сред, как правило, происходит преломление волн.
Ры́бий гла́з — разновидность сверхширокоугольных объективов с целенаправленно увеличенной дисторсией, другое название дисторси́рующий объектив. От обычных (ортоскопических) короткофокусных объективов отличается ярко выраженной бочкообразной дисторсией, позволяющей отображать пространство и предметы при помощи азимутальной, ортографической или стереографической проекций, в зависимости от конкретной оптической конструкции. За счёт сильных искажений угловое поле «рыбьего глаза» может достигать 180° или даже превышать эту величину, что недоступно для ортоскопической оптики, реализующей гномоническую проекцию окружающего пространства.
Интерфере́нция в то́нких плёнках — явление, которое возникает в результате разделения луча света при отражении от верхней и нижней границ тонкой плёнки. В результате возникают две световые волны, которые могут интерферировать. Тонкоплёночная интерференция объясняет цветовую палитру, видимую в свете, отражённом от мыльных пузырей и масляных плёнок на воде. Это явление также является основополагающим механизмом, используемым в объективах камер, зеркалах, оптических фильтрах и антибликовых покрытиях.
Глаз омара — схема в рентгеновской оптике, которая имитирует структуру глаза омара и может иметь сверхширокое поле зрения. Применение этой схемы в рентгеновской астрономии позволяет не только наблюдать за заранее выбранными объектами, но и осуществлять непрерывный мониторинг больших областей небесной сферы. Хотя «глаз омара» был предложен ещё в 1970-х годах, он был впервые использован для астрономических наблюдений в миссии Lobster Eye Imager for Astronomy (LEIA) на китайском космическом аппарате-демонстраторе технологий SATech‑01, запущенном в 2022 году. По этой же схеме построен широкоугольный рентгеновский телескоп WXT, установленный на запущенной в январе 2024 года космической обсерватории Einstein Probe, созданной Китайской академией наук. Планируется применение «глаза омара» в ряде других проектов космических рентгеновских телескопов.
Преобразование Фолди — Ваутхайзена — унитарное преобразование, которое позволяет представить уравнение Дирака в виде пары двухкомпонентных уравнений (спиноров), которые в нерелятивистском пределе переходят в уравнение Паули и уравнение для отрицательных энергий. В представлении ФВ соотношения между операторами динамических величин аналогичны соотношениям для классических величин. Имело историческое значение, применялось для решения парадоксов, возникающих в теории Дирака, и интерпретации операторов координаты, скорости, спина, момента импульса.