Граф Петерсена — неориентированный граф с 10 вершинами и 15 рёбрами; достаточно простой граф, используемый в качестве примера и контрпримера для многих задач в теории графов.
В теории графов рёберным графом L(G) неориентированного графа G называется граф L(G), представляющий соседство рёбер графа G.
Граф Радо — единственный счётный граф R, такой, что для любого конечного графа G и его вершины v любое вложение G − v в R в качестве порождённого подграфа может быть расширено до вложения G в R. Как результат граф Радо содержит все конечные и счётные бесконечные графы в качестве подграфов. Граф Радо известен также под именами случайный граф и граф Эрдёша — Реньи.
В теории графов графами Пэли называются плотные неориентированные графы, построенные из членов подходящего конечного поля путём соединения пар элементов, отличающихся на квадратичный вычет. Графы Пэли образуют бесконечное семейство конференсных графов, поскольку тесно связаны с бесконечным семейством симметричных конференсных матриц. Графы Пэли дают возможность применить теоретические средства теории графов в теории квадратичных вычетов и имеют интересные свойства, что делает их полезными для теории графов в общем.
В теории графов короной с 2n вершинами называется неориентированный граф с двумя наборами вершин ui и vi и рёбрами между ui и vj, если i ≠ j. Можно рассматривать корону как полный двудольный граф, из которого удалено совершенное паросочетание, как двойное покрытие двудольным графом полного графа, или как двудольный граф Кнезера Hn,1, представляющий подмножества из 1 элемента и (n − 1) элементов множества из n элементов с рёбрами между двумя подмножествами, если одно подмножество содержится в другом.
В теории графов графом без треугольников называется неориентированный граф, в котором никакие три вершины не образуют треугольник из рёбер. Графы без треугольников можно определить также как графы с кликовым числом ≤ 2, графы с обхватом ≥ 4, графы без порождённых 3-циклов, или как локально независимые графы.
Куби́ческий граф — граф, в котором все вершины имеют степень три. Другими словами, кубический граф является 3-регулярным. Кубические графы называются также тривалентными.
Книжное вложение в теории графов — обобщение планарного вложения графа до вложения в книгу — набор полуплоскостей, имеющих одну и ту же прямую в качестве границы. Обычно требуется, чтобы вершины графа лежали на этой границе, а рёбра должны находиться внутри одной страницы. Книжная толщина графа — наименьшее число полуплоскостей для всех книжных вложений графа. Книжное вложение используется для некоторых других инвариантов графа, включая ширину страницы и книжное число скрещиваний.
Порождённый подграф графа — это другой граф, образованный из подмножества вершин графа вместе со всеми рёбрами, соединяющими пары вершин из этого подмножества.
Характеризация запрещёнными графами — это метод описания семейства графов или гиперграфов путём указания подструктур, которым запрещено появляться внутри любого графа в семействе.
Панциклический граф — ориентированный или неориентированный граф, который содержит циклы всех возможных длин от трёх до числа вершин графа. Панциклические графы являются обобщением гамильтоновых графов, графов, которые имеют циклы максимальной возможной длины.
В теории графов псевдолес — это неориентированный граф, в котором любая связная компонента имеет максимум один цикл. То есть это система вершин и рёбер, соединяющих пары вершин, такая, что никакие два цикла не имеют общих вершин и не могут быть связаны путём. Псевдодерево — это связный псевдолес.
1-планарный граф — граф, который может быть нарисован в евклидовой плоскости таким образом, что каждое ребро имеет максимум одно пересечение с единственным другим ребром. Естественное обобщение — -планарный граф.
Граф Аполлония — неориентированный граф, образованный рекурсивным процессом подразделения треугольника на три меньших треугольника. Графы Аполлония можно эквивалентно определить как планарные 3-деревья, как максимальные планарные хордальные графы, как однозначно 4-раскрашиваемые планарные графы или как графы блоковых многогранников. Графы названы именем Аполлония Пергского, изучавшего связанные построения упаковки кругов.
Задача поиска изоморфного подграфа — это вычислительная задача, в которой входом являются два графа G и H и нужно определить, не содержит ли G подграф, изоморфный графу H. Задача поиска изоморфного подграфа является обобщением как задачи о максимальной клике, так и задачи о проверке, не содержит ли граф гамильтонов цикл, а потому является NP-полной. Однако задачи поиска изоморфного подграфа с некоторыми видами подграфов могут быть решены за полиномиальное время.
Кососимметрический граф — ориентированный граф, изоморфный своему собственному транспонированному графу. Этот граф образуется путём обращения всех дуг с изоморфизмом и является инволюцией без неподвижных точек. Кососимметрические графы идентичны двойным покрытиям двунаправленных графов.
Граф Брауэра — Хемерса — 20-регулярный неориентированный граф с 81 вершиной и 810 рёбрами. Это сильно регулярный, дистанционно-транзитивный граф и граф Рамануджана. Хотя его построение является математическим фольклором, он был назван именами Андреаса Брауэра и Уиллема Х. Хемерса, которые доказали его единственность в качестве строго регулярного графа.