Фундамента́льная гру́ппа — одна из простейших конструкций в алгебраической топологии. Сопоставляется группа всякому связному топологическому пространству. Для подмножеств плоскости эта группа измеряет количество «дырок». Наличие «дырки» определяется невозможностью непрерывно продеформировать (стянуть) некоторую замкнутую кривую в точку.
Топологи́ческое простра́нство — множество, для элементов которого определено, какие из них близки друг к другу. Является центральным понятием общей топологии.
Тригономе́трия — раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии. Данный термин впервые появился в 1595 г. как название книги немецкого математика Бартоломеуса Питискуса, а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, архитектуре и геодезии для вычисления одних элементов треугольника по данным о других его элементах.
Прямое произведение — множество, элементами которого являются все возможные упорядоченные пары элементов заданных двух непустых исходных множеств. Предполагается, что впервые «декартово» произведение двух множеств ввёл Георг Кантор.
Краевая задача — задача о нахождении решения заданного дифференциального уравнения, удовлетворяющего краевым (граничным) условиям в концах интервала или на границе области. Краевые задачи для гиперболических и параболических уравнений часто называют начально-краевыми или смешанными, потому что в них задаются не только граничные, но и начальные условия.
Ряд Те́йлора — разложение функции в бесконечную сумму степенных функций. Частный случай разложения в ряд Тейлора в нулевой точке называется рядом Маклорена.
Распределение вероятностей — это закон, описывающий область значений случайной величины и вероятности их исхода (появления).
Усто́йчивое распределе́ние в теории вероятностей — это такое распределение, которое может быть получено как предел по распределению сумм независимых случайных величин.
Метод Ньютона, алгоритм Ньютона — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Модификацией метода является метод хорд и касательных. Также метод Ньютона может быть использован для решения задач оптимизации, в которых требуется определить ноль первой производной либо градиента в случае многомерного пространства.
Логистическая регрессия или логит-модель — статистическая модель, используемая для прогнозирования вероятности возникновения некоторого события путём его сравнения с логистической кривой. Эта регрессия выдаёт ответ в виде вероятности бинарного события.
Когомологии де Рама — теория когомологий, основанная на дифференциальных формах, и применяемая в теориях гладких и алгебраических многообразий.
В математике последовательностью ортогональных многочленов называют бесконечную последовательность действительных многочленов
- ,
Кратность критической точки -гладкой функции — размерность так называемой локальной алгебры градиентного отображения этой функции в рассматриваемой точке.
Стохастический интеграл — интеграл вида , где — случайный процесс с независимыми нормальными приращениями. Стохастические интегралы широко используются в стохастических дифференциальных уравнениях. Стохастический интеграл нельзя вычислять как обычный интеграл Стилтьеса.
Теорема Тейлора даёт приближение к функции, дифференцируемой k раз, вблизи данной точки с помощью многочлена Тейлора k-го порядка. Для аналитических функций многочлен Тейлора в данной точке является частичной суммой их ряда Тейлора, который, в свою очередь, полностью определяет функцию в некоторой окрестности точки. Точное содержание теоремы Тейлора до настоящего времени не согласовано. Конечно, существует несколько версий теоремы, применимых в различных ситуациях, и некоторые из этих версий содержат оценки ошибки, возникающей при приближении функции с помощью многочлена Тейлора.
Гладкое многообразие — многообразие, наделенное гладкой структурой. Гладкие многообразия являются естественной базой для построения дифференциальной геометрии. На дифференциальных многообразиях вводятся дополнительные инфинитезимальные структуры — касательное пространство, ориентация, метрика, связность и т. д., и изучаются те свойства, связанные с этими объектами, которые инвариантны относительно группы диффеоморфизмов, сохраняющих дополнительную структуру.
Субградиентные методы — итеративные методы решения задач выпуклой минимизации. Субградиентные методы, разработанные Наумом Зуселевичем Шором сходятся, даже если применяются к недифференцируемым целевым функциям. Когда функция дифференцируема, субградиентные методы для задач без ограничений используют то же направление поиска, что и метод наискорейшего спуска.