Серге́й Петро́вич Но́виков — советский, российский и американский математик, специалист в области дифференциальной топологии. Академик РАН, доктор физико-математических наук. Лауреат Филдсовской премии.
Олег Владимирович Бесов — советский и российский математик, доктор физико-математических наук, член-корреспондент РАН по Отделению математики с 1990 года, профессор МФТИ, заведующий отделом теории функций Математического института им. В. А. Стеклова РАН. Лауреат Государственной премии СССР (1977).
Алексе́й Васи́льевич Погоре́лов — советский математик. Специалист в области выпуклой и дифференциальной геометрии, теории дифференциальных уравнений и теории оболочек. Академик АН СССР / РАН. Лауреат Ленинской премии.
Дми́трий Ви́кторович Ано́сов — советский и российский математик, академик, специалист по теории динамических систем и дифференциальных уравнений, дифференциальной геометрии и топологии. Доктор физико-математических наук (1966), член-корреспондент АН СССР, действительный член Российской академии наук (1992), заслуженный профессор Московского государственного университета им. М. В. Ломоносова.
Ю́рий Никола́евич Суббо́тин — советский и российский математик, доктор физико-математических наук, член-корреспондент РАН (2000). Создатель и руководитель уральской школы по теории сплайнов. Член объединённого учёного совета по математике УрО РАН.
Александр Викторович Абро́симов — советский и российский математик и педагог, кандидат физико-математических наук (1984).
Евгений Михайлович Никишин — советский математик, доктор физико-математических наук, профессор Московского университета. Лауреат международной премии им. Р. Салема по математике.
Дезин Алексей Алексеевич — советский и российский математик.
Галина Николаевна Тюрина — советский математик, специалист по алгебраической геометрии, кандидат физико-математических наук, ученица И. Р. Шафаревича.
Александр Александрович Абрамов — советский и российский математик, заслуженный деятель науки Российской Федерации. Главный научный сотрудник отдела вычислительных методов Вычислительного центра имени А. А. Дородницына РАН.
Анализ — объединение нескольких разделов математики, исторически выросшее из классического математического анализа и охватывающее, кроме дифференциального и интегрального исчислений, входящих в классическую часть, такие разделы, как теории функций вещественной и комплексной переменной, теории дифференциальных и интегральных уравнений, вариационное исчисление, гармонический анализ, функциональный анализ, теорию динамических систем и эргодическую теорию, глобальный анализ. Нестандартный анализ находится на стыке математической логики и анализа, применяет методы теории моделей для альтернативной формализации, прежде всего, классических разделов.
Александр Сергеевич Мищенко — советский и российский учёный-математик, профессор.
Зоря Яковлевна Шапиро — советский математик и педагог высшей школы. Кандидат физико-математических наук. Доцент кафедры математического анализа механико-математического факультета МГУ.
Евгений Михайлович Чирка — советский и российский учёный в области математики. Член-корреспондент РАН (2003). Педагог высшей школы.
Борис Анатольевич Дубровин — советский и российский математик, специалист по геометрическим методам математической физики.
Список эпонимов, названных в честь немецкого математика, механика и физика Бернхарда Римана (1826—1866).
- Геометрия Римана — одна из трёх «великих геометрий», которые, помимо римановской, включают геометрию Евклида и геометрию Лобачевского.
- Гипотеза Римана — одна из проблем тысячелетия, сформулированная Бернхардом Риманом в 1859 году.
- Дзета-функция Римана — функция комплексного переменного, определяемая с помощью ряда Дирихле.
- Дифференциальное уравнение Римана — обобщение гипергеометрического уравнения, позволяющее получить регулярные сингулярные точки в любой точке сферы Римана.
- Дифферинтеграл Римана — Лиувилля — обобщение понятия повторной первообразной, отображающее вещественную функцию в другую функцию того же типа.
- Задача Римана о распаде произвольного разрыва — задача о построении аналитического решения нестационарных уравнений механики сплошных сред, в применении к распаду произвольного разрыва.
- Инварианты Римана — в газовой динамике — комбинированные параметры для некоторых частных течений газообразной среды.
- Интеграл Римана — одно из первых формализаций понятия интеграла.
- Интеграл Римана — Стилтьеса — обобщение определённого интеграла, предложенное в 1894 году Стилтьесом.
- Кратный интеграл Римана — один из вариантов кратных интегралов по измеримым множествам.
- Неравенство Римана — Пенроуза — неравенство, связывающее минимальную массу тела и площадь ловушечной поверхности чёрной дыры.
- Обобщённые гипотезы Римана — формулирование гипотезы Римана для L-функций Дирихле.
- Основная теорема римановой геометрии — наименование нескольких математических утверждений: Теоремы о связности Леви-Чивиты и Теоремы Нэша о регулярных вложениях.
- Производная Римана — одно из симметричных предельных определений производной.
- Псевдориманово многообразие — многообразие, в котором задан метрический тензор, невырожденный в каждой точке, но не обязательно положительно определённый.
- Риманова геометрия — раздел дифференциальной геометрии, главным объектом изучения которого являются римановы многообразия, то есть гладкие многообразия с дополнительной структурой, римановой метрикой.
- Риманова поверхность — традиционное в комплексном анализе название одномерного комплексного дифференцируемого многообразия.
- Риманова субмерсия — субмерсия между римановыми многообразиями, которая инфинитезимально является ортогональной проекцией.
- Риманово многообразие — вещественное дифференцируемое многообразие M, в котором каждое касательное пространство снабжено скалярным произведением g — метрическим тензором, меняющимся от точки к точке гладким образом.
- Субриманово многообразие — математическое понятие, обобщающее риманово многообразие.
- Сумма Римана — одно из классических определений интегральных сумм.
- Сфера Римана — риманова поверхность, естественная структура на расширенной комплексной плоскости, являющаяся комплексной проективной прямой.
- Тензор кривизны Римана — стандартный способ выражения кривизны римановых многообразий, а в общем случае — произвольных многообразий аффинной связности, без кручения или с кручением.
- Теорема Римана об отображении — важнейшая закономерность 2-мерной конформной геометрии и одномерного комплексного анализа.
- Теорема Римана об условно сходящихся рядах — теорема математического анализа, утверждающая, что перестановкой членов произвольного условно сходящегося ряда можно получить произвольное значение.
- Теорема Римана об устранимой особой точке — утверждение из теории функций комплексной переменной о заполнении устранимого разрыва.
- Теорема Римана — Роха — важная теорема математики, особенно в комплексном анализе и алгебраической геометрии, помогающая в вычислении размерности пространства мероморфных функций с предписанными нулями и разрешёнными полюсами.
- Условия Коши — Римана — соотношения, связывающие вещественную и мнимую части всякой дифференцируемой функции комплексного переменного.
- Формула Римана — фон Мангольдта — выражение, описывающее распределение нулей дзета-функции Римана.
- Функция Римана — одна из функций, определённых Риманом: Дзета-функция Римана, Кси-функция Римана, Тета-функция Римана, Функция Римана, Функция Римана, Функция Римана (ТФДП).
- Функция Римана (ТФДП) — пример функции вещественной переменной, которая непрерывна на множестве иррациональных чисел, но разрывна на множестве рациональных.
Андрей Андреевич Шкаликов — советский и российский учёный-математик, специалист в области функционального анализа, член-корреспондент РАН (2019).
Давыдов Алексей Александрович — российский учёный-математик, д.ф.-м.н. (1993), профессор (1995), заведующий кафедрой теории динамических систем механико-математического факультета МГУ.
Виктор Валентинович Власов — российский математик, доктор физико-математических наук (1997), профессор (2000), заместитель заведующего кафедрой математического анализа мехмата МГУ.
Маломерная топология — направление в топологии, изучающее многообразия или, в более общем смысле, топологические пространства четырёх или менее размерностей. В частности, к направлению относятся структурная теория 3-многообразий и 4-многообразий, теория узлов и теория кос. Направление можно рассматривать как часть геометрической топологии.