Фи́зика твёрдого те́ла — раздел физики конденсированного состояния, задачей которого является описание физических свойств твёрдых тел с точки зрения их атомного строения. Интенсивно развивалась в XX веке после открытия квантовой механики. Развитие стимулировалось широким спектром важных задач прикладного характера, в частности, развитием полупроводниковой техники.
Криста́ллы — твёрдые тела, в которых частицы расположены регулярно, образуя трёхмерно-периодическую пространственную укладку — кристаллическую решётку.
Аллотро́пия — существование двух и более простых веществ одного и того же химического элемента.
Кристалли́ческая решётка — вспомогательный геометрический образ, вводимый для анализа строения кристалла. Решётка имеет сходство с канвой или сеткой, что даёт основание называть точки решётки узлами. Решёткой является совокупность точек, которые возникают из отдельной произвольно выбранной точки кристалла под действием группы трансляции. Это расположение замечательно тем, что относительно каждой точки все остальные расположены совершенно одинаково. Применение к решётке в целом любой из присущих ей трансляций приводит к её параллельному переносу и совмещению. Для удобства анализа обычно точки решётки совмещают с центрами каких-либо атомов из числа входящих в кристалл, либо с элементами симметрии.
Решётка Браве́ — понятие для характеристики кристаллической решётки относительно сдвигов. Названа в честь французского физика Огюста Браве. Решёткой или системой трансляций Браве называется набор элементарных трансляций или трансляционная группа, которыми может быть получена вся бесконечная кристаллическая решётка. Все кристаллические структуры описываются 14 решётками Браве, число которых ограничивается симметрией.
Сингони́я — классификация кристаллографических групп симметрии, кристаллов и кристаллических решёток в зависимости от системы координат ; группы симметрии с единой координатной системой объединяются в одну сингонию. Кристаллы, принадлежащие к одной и той же сингонии, имеют подобные углы и рёбра элементарных ячеек.
Кристаллографическая группа — дискретная группа движений -мерного евклидова пространства, имеющая ограниченную фундаментальную область.
Хими́ческая фо́рмула — условное обозначение химического состава и структуры соединений с помощью символов химических элементов, числовых и вспомогательных знаков. Химические формулы являются составной частью языка химии, на их основе составляются схемы и уравнения химических реакций, а также химическая классификация и номенклатура веществ. Одним из первых начал использовать их русский химик А. А. Иовский.
Решётка — многозначный термин.
- Решётка — заграждение, строительная конструкция из прутьев.
- Решётка — оборудование для механической очистки сточных вод.
- Колосниковая решётка — решётка из чугунных колосников, поддерживающая слой горящего твёрдого топлива в топке.
- Вибрационная решётка — устройство для разрушения залитых песчаных литейных форм встряхиванием.
- Решётка — спусковое (тормозное) устройство фрикционного типа для использования на подвижном рабочем месте в спелеотуризме и промальпе.
Кристаллогра́фия — наука о кристаллах, их структуре, возникновении и свойствах. Она тесно связана с минералогией, физикой твёрдого тела и химией. Исторически кристаллография возникла в рамках минералогии, как наука, описывающая идеальные кристаллы.
Постоя́нная решётки, или параметр решётки — размеры элементарной кристаллической ячейки кристалла. В общем случае элементарная ячейка представляет собой параллелепипед с различными длинами рёбер, обычно эти длины обозначают как a, b, c. Но в некоторых частных случаях кристаллической структуры дли́ны этих рёбер совпадают. Если к тому же выходящие из одной вершины рёбра равны и взаимно перпендикулярны, то такую структуру называют кубической. Структуру с двумя равными рёбрами, находящимися под углом 120 градусов, и третьим ребром, перпендикулярным им, называют гексагональной.
Кристалли́ческая структу́ра — такая совокупность атомов, в которой с каждой точкой кристаллической решётки связана определённая группа атомов, называемая мотивной единицей, причём все такие группы одинаковые по составу, строению и ориентации относительно решётки. Можно считать, что структура возникает в результате синтеза решётки и мотивной единицы, в результате размножения мотивной единицы группой трансляции.
Элементарная ячейка — в геометрии, физике твёрдого тела и минералогии, в частности при обсуждении кристаллической решётки, минимальная ячейка, отвечающая единичной решёточной точке структуры с трансляционной симметрией в 2D, 3D или других размерностях.
Символы Шёнфлиса — одно из обозначений точечных групп симметрии, наряду с символами Германа — Могена. Предложены немецким математиком Артуром Шёнфлисом в книге «Kristallsysteme und Kristallstruktur» в 1891. Могут также использоваться для обозначения пространственных групп.
Кристаллографические группы, или фёдоровские группы — набор групп симметрий, которые описывают все возможные симметрии бесконечного количества периодически расположенных точек в трёхмерном пространстве. Эта классификация симметрий была сделана независимо и почти одновременно русским математиком Фёдоровым и немецким математиком Шёнфлисом. Полученные сведения играют большую роль в кристаллографии.
Структурный тип меди — один из основных структурных типов для простых веществ — металлов. В системе обозначений Strukturbericht тип записывается символами A1, в системе Символ Пирсона — cF4.
Фазы Лавеса — самый многочисленный класс интерметаллических соединений. Подавляющее большинство двойных фаз Лавеса имеют стехиометрический состав AB2, хотя имеются малочисленные исключения из этого правила.
Политипия или политипизм — явление существования у элементов или соединений двух или более структур с разной последовательностью укладки, кристаллографически сходных плотноупакованных слоёв или слоистых «пакетов» атомов. Является частным случаем полиморфизма. Структуры, имеющие различный порядок укладки сходных слоёв называют политипами.
Кристаллографическая точечная группа симметрии — это точечная группа симметрии, которая описывает макросимметрию кристалла. Поскольку в кристаллах допустимы оси только 1, 2, 3, 4 и 6 порядков, из всего бесконечного числа точечных групп симметрии только 32 относятся к кристаллографическим.
Символы Германа — Могена используются для обозначения симметрии точечных групп, плоских групп и пространственных групп. Были предложены немецким кристаллографом Карлом Германом в 1928 году и модифицированы французским минералогом Шарлем-Виктором Могеном в 1931 году. Также называются международными символами, поскольку используются в Интернациональных Таблицах по Кристаллографии, начиная с их первого издания в 1935 году. До этого для обозначения точечных и пространственных групп пользовались, как правило, символами Шёнфлиса.