Симметричность
Симметри́чность может означать:
- Симметрия
- Симметричная операция (от нескольких операндов)
- Симметричная функция (от нескольких переменных)
- в математической логике: Симметричное отношение
- в линейной алгебре: Симметричный тензор
Симметри́чность может означать:
Алгебра множеств в теории множеств — это непустая система подмножеств некоторого множества , замкнутая относительно операций дополнения (разности) и объединения (суммы).
Симме́три́я, в широком смысле — соответствие, неизменность (инвариантность), проявляемые при каких-либо изменениях, преобразованиях. Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы. Двусторонняя симметрия означает, что правая и левая сторона относительно какой-либо плоскости выглядят одинаково.
Коммутативность, переместительный закон — свойство бинарной операции «», заключающееся в возможности перестановки аргументов:
Симметрическая группа — группа всех перестановок заданного множества относительно операции композиции.
Булевой алгеброй называется непустое множество A с двумя бинарными операциями , , одной унарной операцией и двумя выделенными элементами: 0 и 1 такими, что для любых a, b и c из множества A верны следующие аксиомы:
Симметричной (Симметрической) называют квадратную матрицу, элементы которой симметричны относительно главной диагонали. Более формально, симметричной называют такую матрицу , что .
Симметри́ческая ра́зность двух множеств — теоретико-множественная операция, результатом которой является новое множество, включающее все элементы исходных множеств, не принадлежащие одновременно обоим исходным множествам. Другими словами, если есть два множества и , их симметрическая разность есть объединение элементов , не входящих в , с элементами , не входящими в . На письме для обозначения симметрической разности множеств и используется обозначение , реже используется обозначение или .
Симметри́ческий многочле́н — многочлен от переменных, не изменяющийся при всех перестановках входящих в него переменных . Так, для многочлена двух переменных это означает ; примерами симметрических многочленов двух переменных являются , и .
Эрмитова форма — естественный аналог понятия симметричной билинейной формы для комплексных векторных пространств. Для эрмитовых форм верны аналоги многих свойств симметрических форм: приведение к каноническому виду, понятие положительной определенности и критерий Сильвестра.
В математике, симметрической алгеброй векторного пространства над полем называется свободная коммутативная ассоциативная алгебра с единицей, содержащая .
Тензорной алгеброй линейного пространства называется алгебра тензоров любого ранга над с операцией тензорного умножения.
Симме́три́я, в широком смысле — соответствие, неизменность, проявляемые при каких-либо изменениях, преобразованиях.
Полилине́йная а́лгебра — раздел алгебры, обобщающий понятия линейной алгебры на функции нескольких переменных, линейные по каждому из аргументов.
Симметрия встречается не только в геометрии, но и в других областях математики. Симметрия является видом инвариантности, свойством неизменности при некоторых преобразованиях.
Полярное разложение — представление квадратной матрицы в виде произведения эрмитовой и унитарной матриц . Является аналогом разложения любого комплексного числа в виде .
Симметрическая функция от n переменных — это функция, значение которой на любом n-кортеже аргументов то же самое, что и значение на любой перестановке этого n-кортежа. Если, например, , функция может быть симметрической на всех переменных или парах , или . Хотя это может относиться к любым функциям, для которых n аргументов имеют одну и ту же область определения, чаще всего имеются в виду многочлены, которые в этом случае являются симметрическими многочленами. Вне многочленов теория симметрических функций бедна и мало используется. Также обычно не важно точное число переменных, считается что их просто достаточно много. Чтобы сделать эту идею более строгой, с помощью проективного предела осуществляется переход к так называемому кольцу симметрических функций , формально содержащему бесконечное число переменных.
Термин цоколь имеет несколько связанных значений в математике.
Теория инвариантов — раздел общей алгебры, изучающий действия групп на алгебраических многообразиях с точки зрения их влияния на функции, определённые на этих многообразиях. Классический вопрос теории — описать многочлены, которые не меняются или являются инвариантными в отношении к преобразованиям, заданным линейной группой.
Обобщённая тригонометрия — совокупность различных обобщений определений и результатов классической тригонометрии.
Самосопряжённость — математический термин, используемый для наименования свойства элемента алгебры, набора элементов алгебры, линейных операторов, линейных отображений и т. д.,