Топологи́ческое простра́нство — множество, для элементов которого определено, какие из них близки друг к другу. Является центральным понятием общей топологии.
Непреры́вное отображе́ние — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Измери́мые функции представляют естественный класс функций, связывающих пространства с выделенными алгебрами множеств, в частности измеримыми пространствами.
Теоре́ма Нётер или первая теорема Нётер утверждает, что каждой дифференцируемой симметрии действия для физической системы с консервативными силами соответствует закон сохранения. Теорема была доказана математиком Эмми Нётер в 1915 году и опубликована в 1918 году. Действие для физической системы представляет собой интеграл по времени функции Лагранжа, из которого можно определить поведение системы согласно принципу наименьшего действия. Эта теорема применима только к непрерывным и гладким симметриям над физическим пространством.
Де́льта-фу́нкция — обобщённая функция, которая позволяет записать точечное воздействие, а также пространственную плотность физических величин, сосредоточенных или приложенных в одной точке.
Критерий Коши — ряд утверждений в математическом анализе:
- Критерий сходимости последовательности — на котором основывается определение полного метрического пространства.
- Критерий сходимости числовых рядов.
- Критерий Коши равномерной сходимости несобственных интегралов.
- Критерий Коши или число Коши — критерий подобия в механике сплошных сред.
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Ле́мма Фату́ — техническое утверждение, используемое при доказательстве различных теорем в функциональном анализе и теории вероятностей. Оно даёт одно из условий, при которых предел почти всюду сходящейся функциональной последовательности будет суммируемым.
Теоре́ма Его́рова утверждает, что последовательность измеримых функций, сходящаяся почти всюду на некотором множестве, сходится равномерно на достаточно большом его подмножестве.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Леммой Гейне — Бореля называется следующий факт, играющий фундаментальную роль в анализе:
- Из всякой бесконечной системы интервалов, покрывающей отрезок числовой прямой, можно выбрать конечную подсистему, также покрывающую этот отрезок.
Предел вдоль фильтра — обобщение понятия предела.
Формула включений-исключений — комбинаторная формула, позволяющая определить мощность объединения конечного числа конечных множеств, которые в общем случае могут пересекаться друг с другом. В теории вероятностей аналог принципа включений-исключений известен как формула Пуанкаре.
Теорема Дирихле о единицах — теорема алгебраической теории чисел, описывающая ранг подгруппы обратимых элементов кольца алгебраических целых числового поля .
Задача о разорении игрока — задача из области теории вероятностей. Подробно рассматривалась российским математиком А. Н. Ширяевым в монографии «Вероятность».
Тест Адлемана-Померанса-Румели — наиболее эффективный, детерминированный и безусловный на сегодняшний день тест простоты чисел, разработанный в 1983 году. Назван в честь его исследователей — Леонарда Адлемана, Карла Померанса и Роберта Румели. Алгоритм содержит арифметику в цикломатических полях.
Лемма регулярности Семереди — лемма из общей теории графов, утверждающая, что вершины любого достаточно большого графа можно разбить на конечное число групп таких, что почти во всех двудольных графах, соединяющих вершины из двух разных групп, рёбра распределены между вершинами почти равномерно. При этом минимальное требуемое количество групп, на которые нужно разбить множество вершин графа, может быть сколь угодно большим, но количество групп в разбиении всегда ограничено сверху.
В математике, топологическая K-теория является подразделом алгебраической топологии. В начале своего существования она применялась для изучения векторных расслоений на топологических пространствах с помощью идей, признанных в настоящее время частью (общей) K-теории, введенной Александром Гротендиком. Ранние работы по топологической K-теории принадлежат Майклу Атья и Фридриху Хирцебруху.