Тео́рия гра́фов — раздел дискретной математики, изучающий графы, одна из ветвей топологии. В самом общем смысле граф — это множество точек, которые соединяются множеством линий. Теория графов включена в учебные программы для начинающих математиков, поскольку:
- как и геометрия, обладает наглядностью;
- как и теория чисел, проста в объяснении и имеет сложные нерешённые задачи;
- не имеет громоздкого математического аппарата ;
- имеет выраженный прикладной характер.
Плана́рный граф — граф, который можно изобразить на плоскости без пересечений рёбер не по вершинам. Какое-либо конкретное изображение планарного графа на плоскости без пересечения рёбер не по вершинам называется плоским графом. Иначе говоря, планарный граф изоморфен некоторому плоскому графу, изображённому на плоскости так, что его вершины — это точки плоскости, а рёбра — кривые на плоскости, которые если и пересекаются между собой, то только по вершинам. Области, на которые граф разбивает плоскость, называются его гранями. Неограниченная часть плоскости — тоже грань, называемая внешней гранью. Любой плоский граф может быть спрямлён, то есть перерисован на плоскости так, что все его рёбра будут отрезками прямых.
Граф Петерсена — неориентированный граф с 10 вершинами и 15 рёбрами; достаточно простой граф, используемый в качестве примера и контрпримера для многих задач в теории графов.
В теории графов нечётные графы On — это семейство симметричных графов с высоким нечётным обхватом, определённых на некоторых семействах множеств. Они включают и обобщают графы Петерсена.
Граф Дезарга — дистанционно-транзитивный кубический граф с 20 вершинами и 30 рёбрами. Назван в честь Жерара Дезарга. Возникает в некоторых комбинаторных построениях, имеет высокую степень симметрии, это единственный известный непланарный кубический частичный куб и применяется в химических базах данных.
Куби́ческий граф — граф, в котором все вершины имеют степень три. Другими словами, кубический граф является 3-регулярным. Кубические графы называются также тривалентными.
Снарк в теории графов — связный кубический граф без мостов c хроматическим индексом 4. Другими словами, это граф, в котором каждая вершина имеет три соседние вершины и рёбра нельзя выкрасить только в три цвета, так чтобы два ребра одного цвета не сходились в одной вершине. Чтобы избежать тривиальных случаев, снарками часто не считают графы, имеющие обхват меньше 5.
Снарк Блануши — 3-регулярный граф с 18 вершинами и 27 рёбрами. Существуют два таких графа. Носят имя нашедшего оба этих графа в 1946 году югославского математика Данило Блануши.
В теории графов снарки «Цветы» образуют бесконечное семейство снарков, введённых Айзексом Руфусом в 1975 году.
Граф Коксетера — 3-регулярный граф с 28 вершинами и 42 рёбрам Все кубические дистанционно-регулярные графы известны, граф Коксетера — один из 13-ти таких графов.
В теории графов граф Науру — это симметричный двудольный кубический граф с 24 вершинами и 36 рёбрами. Граф был назван Дэвидом Эпштейном по аналогии с двенадцатилучевой звездой на флаге Науру.
В теории графов граф Титце — это неориентированный кубический граф с 12 вершинами и 18 рёбрами. Граф назван именем Генриха Титце, показавшего в 1910 году, что ленту Мёбиуса можно разделить на шесть областей, касающихся друг друга — три вдоль границы ленты и три вдоль центральной линии — а потому для графов, допускающих вложение в ленту Мёбиуса, может потребоваться шесть цветов. Граничные сегменты областей Титца разделения ленты Мёбиуса образуют вложение графа Титце.
Двойное покрытие циклами в теории графов — множество циклов в неориентированном графе, которое включает в себя каждое ребро ровно два раза. Например, любой полиэдральный граф образован из вершин и рёбер выпуклого многогранника, грани же при этом образуют двойное покрытие циклами: каждое ребро принадлежит ровно двум граням.
В теории графов говорят, что граф G гипогамильтонов, если сам по себе граф не имеет гамильтонова цикла, но любой граф, полученный удалением одной вершины из G, является гамильтоновым.
Двудольное двойное покрытие неориентированного графа G — это двудольный накрывающий граф графа G с двойным числом вершин по сравнению с G. Покрытие можно построить как тензорное произведение графов, G × K2. Это покрытие также называется двойным покрытием Кронекера или каноническим двойным покрытием графа G.
Снарк «двойная звезда» — снарк с 30 вершинами и 45 рёбрами.
Снарки Лупикайна — это два снарка, оба с 22 вершинами и 33 рёбрами. Для этих снарков встречается также название Снарки Голдберга — Лупикайна. Название «снарки Лупикайна» ввёл Айзекс в статье 1978 года, в которой он описал их построение.
Теорема Петерсена — одна из самых ранних теорем теории графов, названная в честь Юлиуса Петерсена. Определение теоремы может быть сформулировано следующим образом:
Теорема Петерсена. Любой кубический двусвязный граф содержит в себе совершенное паросочетание.